Exterior Algebra

Let V be a real vector space of dimension n.

Definition, Alternating algebraic forms:

For each k, we define \Alt^k V as the space of alternating k-linear maps V \times \cdots \times V \rightarrow \mathbb{R}.

Note

  • \Alt^0 = \mathbb{R},
  • \Alt^1 = V^{*} is the dual space of V (the space of covectors)

Definition, Exterior product:

For \omega \in \Alt^j and \eta \in \Alt^k, their exterior (wedge) product is given by:

(\omega \wedge \eta ) (v_1, \cdots, v_{j+k}) = \sum_{\sigma} (\mathrm{sign}~ \sigma)
\omega (v_{\sigma(1)}, \cdots, v_{\sigma(j)})
\eta (v_{\sigma(j+1)}, \cdots, v_{\sigma(j+k)})

for all v_i \in V. Where the sum is over all permutations \sigma of \{ 1,\cdots,j+k \}, for which \sigma(1)< \cdots <\sigma(j) and \sigma(j+1)< \cdots <\sigma(j+k).

Note

  • The exterior product is bilinear, associative,
  • anti-commutative: \eta \wedge \omega = (-1)^{jk} \omega \wedge \eta for all \omega \in \Alt^j and \eta \in \Alt^k.

Definition, Grassmann Algebra:

Grassmann Algebra is defined by:

\Alt V := \bigoplus_k \Alt^k V

This is a anti-commutative graded algebra. Also called Exterior Algebra of V^{*}

In the case of V=\mathbb{R}^n, we have:

  • \Alt V^0 \sim \mathbb{R},
  • \Alt V^1 \sim \mathbb{R}^n,
  • \Alt V^{n-1} \sim \mathbb{R}^n, using Riesz representation theorem,
  • \Alt V^n \sim \mathbb{R}, using the map v \longmapsto \det(v,v_1,\cdots,v_{n-1}).

Basis

Let v_1,\cdots,v_n be a basis of V and \mu_1,\cdots,\mu_n the associated dual basis for V^* (\mu_i(v_j) = \delta_{ij}).

For any increasing permutations \sigma, \rho : \{ 1,\cdots,k \} \longrightarrow \{ 1,\cdots,n \}, we have:

\mu_{\sigma(1)} \wedge \cdots \wedge \mu_{\sigma(k)} (v_{\rho(1)}, \cdots, v_{\rho(k)}) = \chi_{\sigma,\rho}

thus the \binom {n}{k} algebraic k-forms \mu_{\sigma(1)} \wedge \cdots \wedge \mu_{\sigma(k)}, form a basis for \Alt^k V and \dim \Alt^k V = \binom {n}{k}.

Definition, Interior product:

Let \omega be a k-form, and v \in V. The interior product of \omega and v is the (k-1)-form \omega \lrcorner v defined by:

\omega \lrcorner v (v_1,\cdots,v_{k-1}) = \omega (v,v_1,\cdots,v_{k-1})

  • We have for \omega \in \Alt^k V, \eta \in \Alt^l V and v \in V:

(\omega \wedge \eta) \lrcorner v = (\omega \lrcorner v)\wedge \eta + (-1)^k \omega \wedge (\eta \lrcorner v)

Definition, Inner product:

If V is has an inner product, then \Alt^k V is endowed with an inner product given by:

(\omega , \eta) = \sum_{\rho} \omega (v_{\rho(1)}, \cdots, v_{\rho(k)}) \eta (v_{\rho(1)}, \cdots, v_{\rho(k)}), ~~~\forall \omega, \eta \in \Alt^k V.

where the sum is over increasing sequences \rho : \{ 1,\cdots,k \} \longrightarrow \{ 1,\cdots,n \}, and v_1, \cdots,v_n is any orthonormal basis.

Orientation and Volume form

Todo

add Orientation and Volume form

Definition, Pullback:

A linear transformation of vector spaces L: V \rightarrow W induces a transformation L^{*}: \Alt W \rightarrow \Alt V, called the pullback, and given by:

L^{*} \omega (v_{1}, \cdots, v_{k}) = \omega (L v_{1}, \cdots, L v_{k}),~~~~~ \forall \omega \in \Alt^k W,~~~ v_{1}, \cdots, v_{k} \in V

  • The pullback acts contravariantly: if U \xrightarrow{~K~} V \xrightarrow{~L~} W then,

    \Alt W \xrightarrow{~K^{*}~} \Alt V \xrightarrow{~L^{*}~} \Alt U

  • L^{*} (\omega \wedge \eta) = L^{*} \omega \wedge L^{*} \eta

Let V be a subspace of W. For the inclusion \imath_V : V \longrightarrow W, we can define its pullback \imath_V^{*}: this is a surjection of \Alt W onto \Alt V.

If W has an inner product and \pi_V : W \longrightarrow V is the orthogonal projection. We can define its pullback \pi_V^{*} : this an injection of \Alt V onto \Alt W.

Let us consider the composition : W shortstack{\pi_V \ \longrightarrow} V shortstack{\imath_V \ \longrightarrow} W, and its pullback \pi_V^* \imath_V^*.

Definition, The tangential and normal parts:

  • \pi_V^* \imath_V^* associates for each \omega \in \Alt^k its tangential part \omega_{\parallel} with respect to V :

(\pi_V^* \imath_V^* \omega) (v_1,\cdots,v_k) = \omega (\pi_V v_1, \cdots, \pi_V v_k), ~~~~~\forall v_1,\cdots,v_k \in W.

  • \omega - \pi_V^* \imath_V^* \omega associates for each \omega \in \Alt^k its normal part \omega_{\perp} with respect to V.

The tangential part of \omega vanishes if and only if the image of \omega in \Alt^k V vanishes.

Let V be an oriented inner product space, with volume form \mbox{vol}. Let \omega \in \Alt^k V. We can define a new linear map L_{\omega} as the composition of \Alt^{n-k} V \longrightarrow \Alt^n V such as:

\mu \longmapsto \omega \wedge \mu

and the canonical isomorphism of \Alt^n V onto \mathbb{R}, and using the Riesz representation theorem, there exists an element \star \omega \in \Alt^{n-k} V such that : L_{\omega} (\mu) = (\star \omega , \mu), i.e.:

\omega \wedge \mu = (\star \omega , \mu) \mbox{vol}, ~~~\omega \in \Alt^{k}, ~\mu \in \Alt^{n-k}

Definition, The Hodge star operation:

The linear map which maps \Alt^k V onto \Alt^{n-k} V \omega \longmapsto \star \omega is called the Hodge star operator.

  • If e_1,\cdots,e_n is any positively oriented orthonormal basis, and \sigma a permutation, we have

\omega(e_{\sigma(1)}, \cdots, e_{\sigma(k)}) = (\mathrm{sign} \sigma) \star \omega(e_{\sigma(k+1)}, \cdots, e_{\sigma(n)})

  • \star \star \omega = (-1)^{k(n-k)} \omega, ~~~\forall \omega \in \Alt^k V, thus the Hodge star is an isometry.
  • (\star \omega)_{\parallel} = \star (\omega_{\perp}) and (\star \omega)_{\perp} = \star (\omega_{\parallel})
  • the image of \star \omega in \Alt^k V vanishes if and only if \omega_{\perp} vanishes.

\begin{tabular}{|c|l|}
  \hline
 $\Alt^0 \mathbb{R}^3 \cong \mathbb{R}$ &  $c \leftrightarrow c$ \\
%   \hline
 $\Alt^1 \mathbb{R}^3 \cong \mathbb{R}^3$ & $u_1 \diff x_1 + u_2 \diff x_2 + u_3 \diff x_3 \leftrightarrow u$ \\
%    \hline
 $\Alt^2 \mathbb{R}^3 \cong \mathbb{R}^3$ & $u_3 \diff x_1 \wedge \diff x_2 - u_2 \diff x_1 \wedge \diff x_3 + u_1 \diff x_2 \wedge \diff x_3 +  \leftrightarrow u$ \\
%   \hline
 $\Alt^3 \mathbb{R}^3 \cong \mathbb{R}$ & $c \diff x_1 \wedge \diff x_2 \wedge \diff x_3 \leftrightarrow c$  \\
  \hline
\end{tabular}

\begin{tabular}{|c|l|}
  \hline
 $ \wedge : \Alt^1 \mathbb{R}^3 \times \Alt^1 \mathbb{R}^3 \longrightarrow \Alt^2 \mathbb{R}^3$
&  $\times : \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}^3$
\\
 $ \wedge : \Alt^1 \mathbb{R}^3 \times \Alt^2 \mathbb{R}^3 \longrightarrow \Alt^3 \mathbb{R}^3$
&  $\cdot : \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$
\\
  \hline
\end{tabular}

\begin{tabular}{|c|l|}
  \hline
 $ L^* : \Alt^0 \mathbb{R}^3 \longrightarrow \Alt^0 \mathbb{R}^3 $ & $\id : \mathbb{R} \longrightarrow \mathbb{R}$
\\
 $ L^* : \Alt^1 \mathbb{R}^3 \longrightarrow \Alt^1 \mathbb{R}^3 $ & $L^T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$
\\
 $ L^* : \Alt^2 \mathbb{R}^3 \longrightarrow \Alt^2 \mathbb{R}^3 $ & $(\det L )L^{-1} : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$
\\
 $ L^* : \Alt^3 \mathbb{R}^3 \longrightarrow \Alt^3 \mathbb{R}^3 $ & $(\det L) : \mathbb{R} \longrightarrow \mathbb{R}$ ~~~($c \longmapsto c \det L$)
\\
  \hline
\end{tabular}

\begin{tabular}{|c|l|}
  \hline
 $ \lrcorner v : \Alt^1 \mathbb{R}^3 \longrightarrow \Alt^0 \mathbb{R}^3 $ & $v \cdot : \mathbb{R}^3 \longrightarrow \mathbb{R}$
\\
 $ \lrcorner v : \Alt^2 \mathbb{R}^3 \longrightarrow \Alt^1 \mathbb{R}^3 $ & $v \times : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$
\\
 $ \lrcorner v : \Alt^3 \mathbb{R}^3 \longrightarrow \Alt^2 \mathbb{R}^3 $ & $v : \mathbb{R} \longrightarrow \mathbb{R}^3$ ~~~($c \longmapsto c v$)
\\
  \hline
\end{tabular}

\begin{tabular}{|c|l|}
  \hline
 inner product on $\Alt^k \mathbb{R}^3$ induced  & dot product on $\mathbb{R}$ and $\mathbb{R}^3$
\\
 by dot product on $\mathbb{R}^3$ &
\\
 $\volume = \diff x_1 \wedge \diff x_2 \wedge \diff x_3$ & $(v_1,v_2,v_3) \longmapsto \det(v_1|v_2|v_3)$
\\
  \hline
\end{tabular}

\begin{tabular}{|c|l|}
  \hline
 $ \star : \Alt^0 \mathbb{R}^3 \longrightarrow \Alt^3 \mathbb{R}^3 $ & $\id : \mathbb{R} \longrightarrow \mathbb{R}$
\\
 $ \star : \Alt^1 \mathbb{R}^3 \longrightarrow \Alt^2 \mathbb{R}^3 $ & $\id : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$
\\
  \hline
\end{tabular}

Exterior Calculus on manifolds and Differential forms

Let \Omega be a smooth manifold, of dimension n.

  • \forall x \in \Omega we denote by T_x \Omega the tangent space. This is a vector space of dimension n,
  • tangent bundle \{ (x,v), ~~ x \in \Omega, v \in T_x \Omega \},
  • Applying the exterior algebra to the tangent spaces, we obtain the exterior forms bundle, whose elements are pairs (x,\mu) with x \in \Omega and \mu \in \Alt^k T_x \Omega.
  • a differential k-form \omega is a section of this bundle. This is a map which associates to each x \in \Omega an element \omega_x \in \Alt^k T_x \Omega,
  • if the map \mathcal{L}_{\omega}^k : x \longmapsto \omega_x (v_1(x), \cdots, v_k(x)) is smooth (whenever v_i are smooth), we say that \omega is a smooth differential k-form,
  • we define \Lambda^k(\Omega) the space of all smooth k-forms on \Omega,
  • \Lambda^0(\Omega) = \mathcal{C}^{\infty}(\Omega),
  • if the map \mathcal{L}_{\omega}^k is \mathcal{C}^{m}(\Omega), we define differential k-forms with less smoothness \mathcal{C}^{m} \Lambda^k (\Omega).

Let \Omega be a smooth manifold, of dimension n.

Exterior product:

if \omega \in \Lambda^k(\Omega) and \eta \in \Lambda^j(\Omega), we may define \omega \wedge \eta as (\omega \wedge \eta)_x = \omega_x \wedge \eta_x and the Grassmann algebra \Lambda(\Omega) := \bigoplus_k \Lambda^k(\Omega)

Differential forms can be differentiated and integrated, without recourse to any additional structure, such as a metric or a measure.

Exterior differentiation:

For each \omega \in \Lambda^k(\Omega), can define the (k+1)-form \diff \omega \in \Lambda^{k+1}(\Omega), such as:

\diff\omega_x(v_1,\cdots,v_{k+1}) = \sum_{j=1}^{k+1} (-1)^j \partial_{v_j} \omega_x(v_1,\cdots,\hat{v_j},\cdots,v_{k+1})

where the hat is used to indicated a suppressed argument.

This defines a graded linear operator of degree +1, of \Lambda(\Omega) onto \Lambda(\Omega).

We have the following properties:

  • \diff \circ \diff = 0
  • \diff (\omega \wedge \eta) = \diff \omega \wedge \eta + (-1)^k \omega \wedge \diff \eta, ~~\forall \omega \in \Lambda^k(\Omega), \eta \in \Lambda^j(\Omega),
  • (Pullback) let \phi be a smooth map of \Omega onto \Omega^{\prime}. Then \phi^*(\omega \wedge \eta) = \phi^*(\omega) \wedge \phi^*(\eta) and \phi^* (\diff \omega) = \diff (\phi^* \omega),
  • (Interior product) the interior product of a differential k-form \omega with a vector field v,
  • we obtain a (k-1)-form by : (\omega \lrcorner v)_x := \omega_x \lrcorner v_x,
  • (Trace operator) the pullback i_{\partial \Omega}^* of i_{\partial \Omega} is the trace operator \trace

Integration:

  • If f is an oriented, piecewise smooth k-dimensional submanifold of \Omega, and \omega is a continuous k-form, then th integral \int_f \omega is well defined :
    • [0-forms] can be evaluated at points,
    • [1-forms] can be integrated over directed curves,
    • [2-forms] can be integrated over directed surfaces,
  • (Inner product) The L^2-inner product of two differential k-forms on an oriented Riemannian manifold \Omega is defined as :

(\omega,\eta)_{L^2 \Lambda^k} = \int_{\Omega} (\omega_x,\eta_x) \volume = \int \omega \wedge \star \eta

The completion of \Lambda^k(\Omega) in the corresponding norm defines the Hilbert space L^2 \Lambda^k(\Omega).

We have the following results:

  • (Integration) if \phi is an orientation-preserving diffeomorphism, then

\int_{\Omega} \phi^* \omega = \int_{\Omega^{\prime}} \omega, ~~~ \forall \omega \in \Lambda^n(\Omega^{\prime})

Theorem, Stokes theorem:

If \Omega is an oriented n-manifold with boundary \partial \Omega, then

\int_{\Omega} \diff \omega = \int_{\partial \Omega} \trace \omega, ~~~ \forall \omega \in \Lambda^{n-1}(\Omega)

Theorem, Integration by parts:

If \Omega is an oriented n-manifold with boundary \partial \Omega, then

\int_{\Omega} \diff \omega \wedge \eta = (-1)^{k-1} \int_{\Omega} \omega \wedge \diff \eta + \int_{\partial \Omega} \trace \omega \wedge \trace \eta, ~~~ \forall \omega \in \Lambda^{k}(\Omega), \eta \in \Lambda^{n-k-1}(\Omega)

Sobolev spaces of differential forms

As for the classical case, we can define the Sobolev spaces as:

  • H^s \Lambda^k(\Omega) is the space of differential k-forms such that \mathcal{L}_{\omega}^k \in H^s(\Omega).
  • H \Lambda^k(\Omega) = \{ \omega \in L^2 \Lambda^k(\Omega),~~ \diff \omega \in L^2 \Lambda^{k+1}(\Omega) \}. The associated norm is :

\| \omega \|_{H \Lambda^k}^2 = \| \omega \|_{H \Lambda}^2 := \| \omega \|_{L^2 \Lambda^k}^2 + \| \diff \omega \|_{L^2 \Lambda^{k+1}}^2

  • H \Lambda^{0}(\Omega) coincides with H^1 \Lambda^{0}(\Omega),
  • H \Lambda^{n}(\Omega) coincides with L^2 \Lambda^{n}(\Omega),
  • for 0 < k < n, we have H^1 \Lambda^k(\Omega) \subset H \Lambda^k(\Omega) \subset L^2 \Lambda^k(\Omega), strictly.

\begin{tabular}{|c|c c c c c|}
  \hline
 $k$ & $\Lambda^k$ & $H \Lambda^k$ & $\diff \omega$ & $\int_f \omega$ & $\kappa \omega$
\\
 \hline
& & & & & \\
 0 & $\mathcal{C}^{\infty}$ & $H^1$ & $\nabla \omega$ & $\omega(f)$ & $0$
\\
 1 & $\mathcal{C}^{\infty}(\mathbb{R}^3)$ & $H(\rots,\mathbb{R}^3)$ & $\rots \omega$ & $\int_f \omega \cdot t \diff \mathcal{H}_1$ & $x \longmapsto x \cdot \omega(x)$
\\
 2 & $\mathcal{C}^{\infty}(\mathbb{R}^3)$ & $H(\divs, \mathbb{R}^3)$ & $\divs \omega$ & $\int_f \omega \cdot n \diff \mathcal{H}_2$ & $x \longmapsto x \times \omega(x)$
\\
 3 & $\mathcal{C}^{\infty}$ & $L^2$ & $0$ & $\int_f \omega \diff \mathcal{H}_3$ & $x \longmapsto x \omega(x)$
\\
& & & & & \\
  \hline
\end{tabular}

Cohomology and De Rham Complex

The De Rham complex is the sequence of spaces and mappings

0 \xrightarrow{\quad} \Lambda^0(\Omega)  \xrightarrow{~\diff~}  \Lambda^1(\Omega)  \xrightarrow{~\diff~}   \cdots  \xrightarrow{~\diff~}  \Lambda^n(\Omega)  \xrightarrow{\quad} 0

Since, \diff \circ \diff = 0, we have

\mathcal{R}(\diff : \Lambda^{k-1}(\Omega) \longrightarrow \Lambda^k(\Omega)) \subset \mathcal{N}(\diff : \Lambda^{k}(\Omega) \longrightarrow \Lambda^{k+1}(\Omega))

If \Omega is an oriented Riemannian manifold, we have the following cohomology:

0 \xrightarrow{\quad} H \Lambda^0(\Omega)  \xrightarrow{~\diff~}  H \Lambda^1(\Omega)  \xrightarrow{~\diff~}   \cdots  \xrightarrow{~\diff~}  H \Lambda^n(\Omega)  \xrightarrow{\quad} 0

The coderivative operator \delta : \Lambda^{k}(\Omega) \longrightarrow \Lambda^{k-1}(\Omega) is defined as:

\star \delta \omega = (-1)^k \diff \star \omega,~~~ \omega \in \Lambda^k(\Omega)

  • we have

(\diff \omega , \eta ) = (\omega , \delta \eta )  + \int_{\partial \Omega} \trace \omega \wedge \trace \eta,  ~~~ \forall \omega \in \Lambda^{k}(\Omega), \eta \in \Lambda^{k+1}(\Omega),

  • \delta is a graded linear operator of degree -1.
  • \delta is the formal adjoint of \diff whenever \omega or \eta vanishes near the boundary.
  • we define the spaces

H^* \Lambda^k(\Omega) = \{ \omega \in L^2 \Lambda^k(\Omega),~~ \delta \omega \in L^2 \Lambda^{k-1}(\Omega) \}.

we have H^* \Lambda^k(\Omega) = \star H \Lambda^{n-k}(\Omega).

  • we obtain the dual complex

0 \xleftarrow{\quad} H^* \Lambda^0(\Omega)  \xleftarrow{~\delta~}  H^* \Lambda^1(\Omega)  \xleftarrow{~\delta~}   \cdots  \xleftarrow{~\delta~}  H^* \Lambda^n(\Omega)  \xleftarrow{\quad} 0

Cohomology with boundary conditions

Let \Lambda_0^k(\Omega) be the subspace of \Lambda^k(\Omega) of smooth k-forms with compact support. We have \diff \Lambda_0^k \subset \Lambda_0^{k+1}.

The De Rham complex with the compact support is

0 \xrightarrow{\quad} \Lambda^0_0(\Omega)  \xrightarrow{~\diff~}  \Lambda^1_0(\Omega)  \xrightarrow{~\diff~}   \cdots  \xrightarrow{~\diff~}  \Lambda^n_0(\Omega)  \xrightarrow{\quad} 0

Recall that the closure of \Lambda_0^k(\Omega) in H \Lambda^k(\Omega) is

H_0 \Lambda^k(\Omega) = \{ \omega \in H \Lambda^k(\Omega),~~ \trace \omega =0\}.

The L^2 version of the last complex is

0 \xrightarrow{\quad} H_0 \Lambda^0(\Omega)  \xrightarrow{~\diff~}  H_0 \Lambda^1(\Omega)  \xrightarrow{~\diff~}   \cdots  \xrightarrow{~\diff~}  H_0 \Lambda^n(\Omega)  \xrightarrow{\quad} 0

Definition, Harmonic forms:

The harmonic k-forms are the differential k-forms that verify the differential equations

\left\{
    \begin{aligned}
      \diff \omega &=& 0,\\
      \delta \omega &=& 0,\\
      \trace \star \omega &=& 0.\\
    \end{aligned}
  \right.

this defines the following space,

\mathfrak{H}^k (\Omega) = \{ \omega \in H \Lambda^k(\Omega) \cap H_0^* \Lambda^k(\Omega),~~\diff \omega = 0, \delta \omega = 0 \}

We can also define the following space,

\mathfrak{H}_0^k (\Omega) = \{ \omega \in H_0 \Lambda^k(\Omega) \cap H^* \Lambda^k(\Omega),~~\diff \omega = 0, \delta \omega = 0 \}

As we can see, \star \mathfrak{H}^k (\Omega) = \mathfrak{H}_0^{n-k} (\Omega).

Proposition, Poincaré duality:

There is an isomorphism between the k th De Rham cohomology space and the (n-k) th cohomology space with boundary conditions.

Homological Algebra and Hilbert complexes

Homological Algebra

  • A cochain complex is a sequence of vector spaces and linear maps
  • k-cocycles \mathfrak{Z}^k := \mathcal{N}(d_k),
  • k-coboundaries \mathfrak{B}^k := \mathcal{R}(d_{k-1}),
  • k-cohomology \mathcal{H}^k(V) := \mathfrak{Z}^k / \mathfrak{B}^k,
  • we say that the sequence is exact, if the cohomology vanishes (i.e. \forall~k,~~ \mathcal{H}^k(V) = \{0\}),
  • Given two cochain complexes V,V^{\prime}, a cochain map f =(f_k) (such as \diff^{\prime}_k f_k = f_{k+1} \diff_k)

\begin{array}{ccccccccc}
\cdots & \longrightarrow & V_{k-1} & \mbox{\shortstack{$\diff_{k-1}$ \\ $\longrightarrow$}} & V_{k} & \mbox{\shortstack{$\diff_k$ \\ $\longrightarrow$}} & V_{k+1} & \longrightarrow~\cdots \\
 & & \downarrow f_{k-1} & & \downarrow f_{k} &  & \downarrow f_{k+1} & & \\
\cdots & \longrightarrow & V_{k-1}^{\prime} & \mbox{\shortstack{$\diff_{k-1}^{\prime}$ \\ $\longrightarrow$}} & V_{k}^{\prime} & \mbox{\shortstack{$\diff_k^{\prime}$ \\ $\longrightarrow$}} & V_{k+1}^{\prime} & \longrightarrow~\cdots
\end{array}

  • f_k maps k-cochains to k-cochains and k-coboundaries to k-coboundaries, thus induces a map \mathcal{H}^k(f) : \mathcal{H}^k(V) \longrightarrow \mathcal{H}^k(V^{\prime}).

Let V^{\prime} \subset V be two cochain complexes,

  • The inclusion \imath_V is a cochain map and thus induces a map of cohomology \mathcal{H}^k(V^{\prime}) \longrightarrow \mathcal{H}^k(V),

  • If there exists a cochain projection of V onto V^{\prime}, (this leads to \pi \circ \imath = \id_{V^{\prime}}) so \mathcal{H}^k(\pi) \circ \mathcal{H}^k(\imath) = \id_{\mathcal{H}^k(V^{\prime})}.

    \begin{array}{ccccccc}
\cdots & \longrightarrow & V_{k-1} & \mbox{\shortstack{$\diff_{k-1}$ \\ $\longrightarrow$}} & V_{k} & \longrightarrow~\cdots \\
 & & \pi_{k-1} \downarrow \uparrow \imath & & \pi_{k} \downarrow \uparrow \imath & & \\
\cdots & \longrightarrow & V_{k-1}^{\prime} & \mbox{\shortstack{$\diff_{k-1}$ \\ $\longrightarrow$}} & V_{k}^{\prime} & \longrightarrow~\cdots
\end{array}

Thus, \mathcal{H}^k(\imath) is injective and \mathcal{H}^k(\pi) is surjective. Hence, if one of the cohomology spaces \mathcal{H}^k(V) vanishes, then so does \mathcal{H}^k(V^{\prime})

Cycles and boundaries of the De Rham complex

  • k-cocycles

\mathfrak{Z}^k = \{ \omega \in H\Lambda^k(\Omega),~~ \diff \omega = 0 \}, ~~~ \mathfrak{Z}^{*k} = \{ \omega \in H^*\Lambda^k(\Omega),~~ \delta \omega = 0 \},

\mathfrak{Z}_0^k = \{ \omega \in H_0\Lambda^k(\Omega),~~ \diff \omega = 0 \}, ~~~ \mathfrak{Z}_0^{*k} = \{ \omega \in H_0^*\Lambda^k(\Omega),~~ \delta \omega = 0 \},

  • k-coboundaries

\mathfrak{B}^k = \diff H\Lambda^{k-1}(\Omega), ~~~ \mathfrak{B}^{* k} = \delta \Lambda^{k+1}(\Omega),

\mathfrak{B}_0^k = \diff H_0\Lambda^{k-1}(\Omega), ~~~ \mathfrak{B}_0^{* k} = \delta \Lambda_0^{k+1}(\Omega),

  • each of the spaces of cycles is closed in \mathcal{H} \Lambda^k(\Omega) (\mathcal{H}^* \Lambda^k(\Omega)), as well in L^2 \Lambda^k(\Omega).
  • each of the spaces of boundaries is closed in L^2 \Lambda^k(\Omega).
  • let \perp denotes the orthogonal complement in L^2 \Lambda^k(\Omega),

\mathfrak{Z}^{k \perp} \subset \mathfrak{B}^{k \perp} = \mathfrak{Z}_0^{* k} , ~~~ \mathfrak{Z}^{* k \perp} \subset \mathfrak{B}^{* k \perp} = \mathfrak{Z}_0^{k}

\mathfrak{Z}_0^{k \perp} \subset \mathfrak{B}_0^{k \perp} = \mathfrak{Z}^{* k} , ~~~ \mathfrak{Z}_0^{* k \perp} \subset \mathfrak{B}_0^{* k \perp} = \mathfrak{Z}^{k}

The Hodge decomposition

There are two Hodge decompositions, with different boundary conditions,

  1. L^2 \Lambda^k(\Omega)
=
\underbrace{\mathfrak{B}^{k}}_{\mathfrak{Z}_0^{* k\perp}}
\oplus
\underbrace{\mathfrak{H}^{k}
\oplus
\mathfrak{B}_0^{* k}}_{\mathfrak{Z}_0^{* k}=\mathfrak{B}^{k\perp}}
=
\overbrace{\mathfrak{B}^{k}
\oplus
\mathfrak{H}^{k}}^{\mathfrak{Z}^{k}=\mathfrak{B}_0^{* k\perp}}
\oplus
\overbrace{\mathfrak{B}_0^{* k}}^{\mathfrak{Z}^{k\perp}}

  2. L^2 \Lambda^k(\Omega)
=
\underbrace{\mathfrak{B}_0^{k}}_{\mathfrak{Z}^{* k\perp}}
\oplus
\underbrace{\mathfrak{H}_0^{k}
\oplus
\mathfrak{B}^{* k}}_{\mathfrak{Z}^{* k}=\mathfrak{B}_0^{k\perp}}
=
\overbrace{\mathfrak{B}_0^{k}
\oplus
\mathfrak{H}_0^{k}}^{\mathfrak{Z}_0^{k}=\mathfrak{B}^{* k\perp}}
\oplus
\overbrace{\mathfrak{B}^{* k}}^{\mathfrak{Z}_0^{k\perp}}

Summary

\begin{tabular}{|c||c|c|c|c|}
 \hline
 $\omega^k \in \Lambda^k(\Omega)$             & $k=0$
                                              & $k=1$
                                              & $k=2$
                                              & $k=3$
 \\
 \hline
 $\diff \omega^k$                             & $\Grad u$
                                              & $\Curl \uu$
                                              & $\Div \uu$
                                              & $-$
 \\
 $\delta \omega^k$                            & $-$
                                              & $-\Div \uu$
                                              & $\Curl \uu$
                                              & $-\Grad u$
 \\
 $\mathfrak{i}_{\boldsymbol{\beta}} \omega^k$ & $-$
                                              & $\boldsymbol{\beta} \cdot \uu$
                                              & $\uu \times \boldsymbol{\beta}$
                                              & $u \boldsymbol{\beta}$
 \\
 $\mathfrak{j}_{\boldsymbol{\beta}} \omega^k$ & $u \boldsymbol{\beta}$
                                              & $-\uu \times \boldsymbol{\beta}$
                                              & $\boldsymbol{\beta} \cdot \uu$
                                              & $-$
 \\
 $L_{\boldsymbol{\beta}} \omega^k$            & $\boldsymbol{\beta} \cdot \Grad u$
                                              & $\Grad \left(\boldsymbol{\beta} \cdot \uu \right)  + \left(\Curl \uu \right) \times \boldsymbol{\beta}$
                                              & $\Curl \left(\uu \times \boldsymbol{\beta} \right) + \boldsymbol{\beta} \Div \uu$
                                              & $\Div \left( u \boldsymbol{\beta} \right)$
 \\
 $\mathcal{L}_{\boldsymbol{\beta}} \omega^k$  & $-\Div \left( u \boldsymbol{\beta} \right)$
                                              & $-\Curl \left(\uu \times \boldsymbol{\beta} \right) - \boldsymbol{\beta} \Div \uu$
                                              & $-\Grad \left(\boldsymbol{\beta} \cdot \uu \right)  - \left(\Curl \uu \right) \times \boldsymbol{\beta}$
                                              & $-\boldsymbol{\beta} \cdot \Grad u$
 \\
 \hline
 $\tr \omega^k$                               & $u(\xx)$
                                              & $\uu(\xx) \times \nn(\xx)$
                                              & $\uu(\xx) \cdot  \nn(\xx)$
                                              & $-$
 \\
 \hline
 \hline
 $H \Lambda^k(\Omega)$                        & $\Hgrad$
                                              & $\Hcurl$
                                              & $\Hdiv$
                                              & $\Ltwo$
 \\
 $V_k$                                        & $\Vgrad$
                                              & $\Vcurl$
                                              & $\Vdiv$
                                              & $\Vltwo$
 \\
 \hline
\end{tabular}

References