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SPL is a Python/Fortran 2003 library for B-Splines/NURBS and Computer Aided Design Algorithms.
SPL can be used in three different ways:

1. Fortran 90/95 subroutines through the file fortran/src/bsplines/bspline.F90

2. Fortran 2003 objects, mainly the mapping and cad objects

3. The same objects as in 2. but through Python

Contents: 1
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2 Contents:



CHAPTER 1

First Steps with SPL

This document is meant to give a tutorial-like overview of SPL.
The green arrows designate “more info” links leading to advanced sections about the described task.
By reading this tutorial, you’ll be able to:

» compile a simple SPL file

* get familiar with parallel programing paradigms

* create, modify and build a SPL project.

1.1 Install SPL

1.2 Examples

In this section, we describe some features of SPL on simple examples.

See script.
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CHAPTER 2

Dive into SPL

2.1 Contents

2.1.1 Introduction

2.1.2 Input and Output
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CHAPTER 3

B-Splines and NURBS

We start this section by recalling some basic properies about B-splines curves and surfaces. We also recall some
fundamental algorithms (knot insertion and degree elevation).

For a basic introduction to the subject, we refer to the books [LP95] and [Far02].

A B-Splines family, (N;)i<i<n of order k, can be generated using a non-decreasing sequence of knots 7' =
(ti)1<i<nth-

3.1 B-Splines series

The j-th B-Spline of order k is defined by the recurrence relation:

N]k = w;'cNJk_l +(1- w;'c-i-l)NJ"fJ:ll
where,
wh(e) = NH@) = Xty 1,11(2)
titk—1—1; Y

fork>1land1 <j <n.
We note some important properties of a B-splines basis:

¢ B-splines are piecewise polynomial of degree p =k — 1,

» Compact support; the support of V. Jk is contained in [t;, ;4] ,

o If x € Jtj,tj41], then only the B-splines {Nf_k_‘_l, e ,N]]?} are non vanishing at x,

* Positivity: Vj € {1,--- ,n} N;(z) >0, Vo €lt;, tj1il,

* Partition of unity >, Nf(z) = 1,Vz € R,

¢ Local linear independence,

If a knot ¢; has a multiplicity 7, then the B-spline is C(P~™) at t;.
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3.2 Knots vector families

There are two kind of knots vectors, called clamped and unclamped. Both families contains uniform and non-
uniform sequences.

The following are examples of such knots vectors
1. Clamped knots (open knots vector)

e uniform
71 ={0,0,0,1,2,3,4,5,5,5}
T, ={-0.2,—-0.2,0.0,0.2,0.4,0.6,0.8,0.8}

08

06+

041

02+

00
0

0.8

¢ non-uniform

8 Chapter 3. B-Splines and NURBS
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Ty = {0,0,0,1,3,4,5,5,5}
T, = {-0.2,-0.2,0.4,0.6,0.8,0.8}

2. Unclamped knots
* uniform
T5={0,1,2,3,4,5,6,7}
Ts = {-0.2,0.0,0.2,0.4,0.6,0.8,1.0}

3.2. Knots vector families 9
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0.8

¢ non-uniform
T, ={0,0,3,4,7,8,9}
T3 = {-0.2,0.2,0.4,0.6,1.0,2.0,2.5}

10 Chapter 3. B-Splines and NURBS
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3.3 B-Spline curve

The B-spline curve in R? associated to knots vector T = (¢;)1<i<n+k and the control polygon (P;)1<i<, is defined
by :

C(t) = Zn: NE(t)P;

In (Fig. ref{figBSplineCurve}), we give an example of a quadratic B-Spline curve, and its corresponding knot vector
and control points.

3.3. B-Spline curve 11
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We have the following properties for a B-spline curve:
e If n = k, then C is just a B’ezier-curve,
* C is a piecewise polynomial curve,

* The curve interpolates its extremas if the associated multiplicity of the first and the last knot are maximum (i.e.
equal to k), i.e. open knot vector,

¢ Invariance with respect to affine transformations,

 Strong convex-hull property:

if t; <t <t;j41, then C(t) is inside the convex-hull associated to the control points P;_,

Py,
* Local modification : moving the i control point P; affects C(t), only in the interval [t;, t; ],
* The control polygon approaches the behavior of the curve.

12

Chapter 3. B-Splines and NURBS
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Note: In order to model a singular curve, we can use multiple control points : P; = P, ;.

3.4 Multivariate tensor product splines

Let us consider d knot vectors 7 = {T", T2, ...  T?}. For simplicity, we consider that these knot vectors are open,
which means that k£ knots on each side are duplicated so that the spline is interpolating on the boundary, and of
bounds 0 and 1. In the sequel we will use the notation I = [0, 1]. Each knot vector T, will generate a basis for
a Schoenberg space, Sk, (T, I). The tensor product of all these spaces is also a Schoenberg space, namely Sk (7)),
where k = {k1,- -+ ,kq}. The cube P = I = [0, 1]%, will be referred to as a patch.

The basis for Sk (7) is defined by a tensor product :
k ._ Ak k k
Nk:=N'@Ni2g...@ Nk
where, i = {i1, -+ ,iq}-

A typical cell from P is a cube of the form : Q; = [&;,,&i,+1] @ -+ ® [&iy, &iyt1]-

3.5 Deriving a B-spline curve

The derivative of a B-spline curve is obtained as:

n n n—1
c'(t) = NF(t)P; = (pW1WFJPM1wQ=.thi
(0= NP =3 (o N 0P - NP ) = X N (00
where Q; = p%, and {Nik_l*, 1 <i < n — 1} are generated using the knot vector 7, which is obtained

from 7" by reducing by one the multiplicity of the first and the last knot (in the case of open knot vector), i.e. by
removing the first and the last knot.

More generally, by introducing the B-splines family {Nf _j*, 1 < i < n — j} generated by the knots vector T~
obtained from 7" by removing the first and the last knot j times, we have the following result:

3.5.1 proposition

The j*" derivative of the curve C is given by
cO() =Y NP
i=1

where, for j > 0
pi) _ P+l (P(jfm _ P(jfl))
Pt —tigg N T ’
and Pgo) =P;.
By denoting C’ and C” the first and second derivative of the B-spline curve C, it is easy to show that:
‘We have,
® C/(O) = P2 — Pl),

_p_
tpt2 (

3.4. Multivariate tensor product splines 13
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° Cl(l) = 1,p (Pn - Pnfl)a

tn

'CH(O):M( 1 Plf{ 1 —+ 1 }P2+$P3),

tp+2  \tp+2 tp+2 © lpts tp+3

-1
¢ /() = 2 (PP (e + P + P

3.5.2 Example

Let us consider the quadratic B-spline curve associated to the knots vector 7' = {000 % % 111} and the control points

{P;,1<i<5}:
5
ety =Y N/ (t)P;
i=1
we have,
4
c't)=>Y_ N"(1)Q
i=1
where

Q =5{P,—Pi}, Q= ?{Ps - Py},
Q3 = ?{sz —P3}, Qu=5{P5—Py4}.

The B-splines {N?", 1 < i < 4} are associated to the knot vector 7* = {00 2 £ 11}.

Fundamental geometric operations

By inserting new knots into the knot vector, we add new control points without changing the shape of the B-Spline
curve. This can be done using the DeBoor algorithm [dB0I]. We can also elevate the degree of the B-Spline family
and keep unchanged the curve [HHMO05]. In (Fig. ref{refinement_curve_B_Spline}), we apply these algorithms on a
quadratic B-Spline curve and we show the position of the new control points.

3.6 Knot insertion

After modification, we denote by 7, 7%, T the new parameters. (Q;) are the new control points.

One can insert a new knot ¢, where ¢; < ¢ < t;1. For this purpose we use the DeBoor algorithm [dB01 |

n=n+1

E=k

T= {t17'~7tj7t7tj+1a"7tn+k}

1 1<i<j—k+1

= i jok42<i<
0 jr1<i

Q =aP;i+(1—-0a;)P;

Many other algorithms exist, like blossoming for fast insertion algorithm. For more details about this topic, we refer

to [NT93].

14

Chapter 3. B-Splines and NURBS
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3.7 Order elevation

We can elevate the order of the basis, without changing the curve. Several algorithms exist for this purpose. We used
the one by Huang et al. [PP91], [HHMOS].

A quadratic B-spline curve and its control points. The knot vector is 7' = {000, 1, £, 3, 111}.

The curve after a h-refinement by inserting the knots {0.15, 0.35} while the degree is kept equal to 2.

The curve after a p-refinement, the degree was raised by 1 (using cubic B-splines).

3.7. Order elevation 15
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The curve after duplicating the multiplicity of the internal knots {%7 %, %}, this leads to a B’ezier description. We can

then, split the curve into 4 pieces (sub-domains), each one will corresponds to a quadratic B ezier curve.

3.8 Translation

3.9 Rotation

Todo: not yet available

16 Chapter 3. B-Splines and NURBS
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3.10 Scaling

Todo: not yet available

References

3.10. Scaling

17
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CHAPTER 4

GLT

4.1 Where do the GLTs come from?

The main aim of this paragraph is to present a crucial example that highlights the importance of the GLT algebra when
dealing with linear systems coming from the discretization of PDEs. Let us start with some preliminaries. In detail,
we will recall the notion of symbol of a matrix-sequence and the basic idea behind the GLT theory.

4.1.1 Spectral preliminaries

The following one is a rather informal definition of symbol of a matrix-sequence.
example:

Whend, =n,d=1,D = [0,7], {An}» ~x f means

References

19
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CHAPTER B

Exterior Algebra

Let V be a real vector space of dimension n.

Definition, Alternating algebraic forms:

For each k, we define Alt *V as the space of alternating k-linear maps V' x

Note:
o« At? =R,

e Alt' = V* is the dual space of V (the space of covectors)

Definition, Exterior product:

For w € Alt7 and n € Alt*, their exterior (wedge) product is given by:

(WAD) (1, V) = (8180 )W (Va(1) 5 Vo)) N(Va(jt1)s V(i)

o

for all v; € V. Where the sum is over all permutations o of {1,---,j + k}, for which ¢(1) < --- < ¢(j) and
o+ < - <o(f+k).

Note:
* The exterior product is bilinear, associative,

* anti-commutative: n A w = (—1)7%w A nforallw € Alt7 and n € Alt*.

21
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Definition, Grassmann Algebra:

Grassmann Algebra is defined by:

AtV = @Altkv
k

This is a anti-commutative graded algebra. Also called Exterior Algebra of V'*

In the case of V= R"™, we have:

e AtV ~ R,

o« AtV ~ R™,

e AtV R, using Riesz representation theorem,

o Alt V™ ~ R, using the map v — det(v,v1, -+ ,Vp_1).
5.1 Basis
Letvy,--- , v, be abasis of V and 1, - - - , p,, the associated dual basis for V* (u;(v;) = ;).
For any increasing permutations o, p : {1,--- ,k} — {1,--- ,n}, we have:

Mo (1) ARERNAN /U'U(k)(vp(l)v t a,U/)(k)) = Xo,p

thus the (}}) algebraic k-forms fiy(1) A - -+ A fiy k), form a basis for Alt ¥V and dim Alt*V = (7).

Definition, Interior product:

Let w be a k-form, and v € V. The interior product of w and v is the (k — 1)-form w_wv defined by:

<"j—"U(Ul?”' avk}—l) ZW(U,U:[,' o avk}—l)

» We have forw € Alt*V,n € Alt'V andv € V:

(wAn)w = (ww) An+ (=1)Fw A (nv)

Definition, Inner product:

If V is has an inner product, then Alt ¥V is endowed with an inner product given by:

(w,n) = Zw(%u), U (V1) V), Yw,n € ARV
o

where the sum is over increasing sequences p : {1,--- ,k} — {1,--- ,n}, and vy, - , v, is any orthonormal
basis.

5.2 Orientation and Volume form

22 Chapter 5. Exterior Algebra
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Todo: add Orientation and Volume form

Definition, Pullback:

A linear transformation of vector spaces L : V' — W induces a transformation L* : Alt W — Alt V, called the
pullback, and given by:

L*w(vy,- - ,v5) = w(Lvy, -, Lvg), Yw€ AWFW, vy, ,0p €V

* The pullback acts contravariantly: if U v Lw then,

AW 2 Al v 2 AU

e L*(wAn) =L*wAL*p

Let V be a subspace of W. For the inclusion ¢y, : V' — W, we can define its pullback 7,: this is a surjection of
Alt W onto Alt V.

If W has an inner product and 7y : W — V is the orthogonal projection. We can define its pullback 7y, : this an
injection of Alt V onto Alt W.

Let us consider the composition : W shortstack{my \ —} V' shortstack{s;, \ —} W, and its pullback 7{4],.

Definition, The tangential and normal parts:

* T}, associates for each w € Alt ¥ its tangential part w) with respect to V' :

(myapw)(vr, -, 0k) = w(myvr, -, Tyvg), Yo, - v € WL

* w — Tl w associates for each w € Alt* its normal part w; with respect to V.

The tangential part of w vanishes if and only if the image of w in Alt ¥V vanishes.

Let V be an oriented inner product space, with volume form vol. Let w € Alt ¥V, We can define a new linear map L,
as the composition of Alt "%V — Alt ™V such as:

ur—wAu

and the canonical isomorphism of Alt "V onto R, and using the Riesz representation theorem, there exists an element
*w € Alt"*V such that : L, (1) = (xw, ), i.e.:

wAp = (*xw,u)vol, w € Alt® e Alg™F

Definition, The Hodge star operation:

The linear map which maps Alt *V onto Alt "~*V w —— xw is called the Hodge star operator.

e Ifeq,---,e, is any positively oriented orthonormal basis, and ¢ a permutation, we have

w(ea(l)a to 7ea(k)) = (Signo—) *w(ea(k‘+1)> o 7ea(n))

o wxw = (=1)Fr=Ry Yo € Alt*V, thus the Hodge star is an isometry.

5.2. Orientation and Volume form 23
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* (xw)) = x(wi) and (xw)1 = *(w))

« the image of xw in Alt ¥V vanishes if and only if w, vanishes.
ALt'R3 =R [ c+c

ABIR3 2 R? | wydzy + usd e + usdzg < u

ALt°R3 2R3 | ugdzy Adag —usda; Adzs +udas Adzs+ <> u
ALSR3 2R | eday Adas Adas < ¢

A AL TR x At TR — AItZ2R3 | x :RP xR — R3
A AR x AIt2R3 — AltPR3 | - R3 x R3 — R

L*: Alt'R® — Alt'R® | id R — R

L*: Alt'R3 — AItIR3 | L7 : R3 — R3

L*: Alt>R3 — Alt2R3 | (det L)L~! : R3 — R3

L*: Alt3R3 — Alt3R3 | (detL): R — R (c—> cdet L)

i AILITR? — AItOR3 [ v-:R® — R
v Alt2R% — AL 'R3 | vx : R? — R3
20 AIESR? — Alt2R3 | v: R — R3 (¢ +— )

inner product on Alt *R? induced | dot product on R and R?
by dot product on R?
vol =dxy Aday Adas (v1,v2,v3) — det(vy|va|vs)

x: AIt'R? — AIt3R? | id :R — R
*: AItIR? — Alt2R3 | id : R? — R3

5.3 Exterior Calculus on manifolds and Differential forms

Let € be a smooth manifold, of dimension n.
* Vz € Q) we denote by 77,2 the tangent space. This is a vector space of dimension n,
* tangent bundle {(z,v), x € Q,v € T, N},

» Applying the exterior algebra to the tangent spaces, we obtain the exterior forms bundle, whose elements are
pairs (x, 1) with z € Q and p € Alt FT,Q.

« a differential k-form w is a section of this bundle. This is a map which associates to each x € €2 an element
we € AIt*FT,Q,

e if the map £X : 2 —— w,(vi(z), - ,vk(x)) is smooth (whenever v; are smooth), we say that w is a smooth
differential k-form,

+ we define A¥(€2) the space of all smooth k-forms on €2,
« AO(Q) =C>=(Q),
* if the map L is C™(€2), we define differential k-forms with less smoothness C"™A* ().

Let € be a smooth manifold, of dimension n.

Exterior product:

if w € A¥(Q) and € AJ(€), we may define w A 1 as (w A7), = w, A1, and the Grassmann algebra A(Q) :=

D A ()

24 Chapter 5. Exterior Algebra
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Differential forms can be differentiated and integrated, without recourse to any additional structure, such as a metric
or a measure.

Exterior differentiation:

For each w € A*(Q), can define the (k + 1)-form dw € AF+1(Q), such as:

k+1

dww(v17~-~ 7vk‘+1) = Z(_l)ja’l}jww(vla" . 71)Aj7"' 7Uk+l)
j=1

where the hat is used to indicated a suppressed argument.

This defines a graded linear operator of degree +1, of A(€2) onto A().

We have the following properties:
edod =0
s dwAn) =dwAn+ (—=DkwAdn, Ywe A¥Q),ne AI(Q),
* (Pullback) let ¢ be a smooth map of 2 onto €. Then ¢*(w A1) = ¢*(w) A ¢*(n) and ¢*(dw) = d (¢*w),
¢ (Interior product) the interior product of a differential k£-form w with a vector field v,
* weobtaina (k — 1)-form by : (W), := Wy 0,

* (Trace operator) the pullback i}, of iaq is the trace operator Tr

Integration:
o If f is an oriented, piecewise smooth k-dimensional submanifold of €2, and w is a continuous k-form, then th
integral | Fw is well defined :
— [0-forms] can be evaluated at points,
— [1-forms] can be integrated over directed curves,
— [2-forms] can be integrated over directed surfaces,

* (Inner product) The L2-inner product of two differential k-forms on an oriented Riemannian manifold € is
defined as :

(w,n) 2w =/(wm7m)v01 Z/w/\*n
Q

The completion of A*(£2) in the corresponding norm defines the Hilbert space L2A* ().

We have the following results:

* (Integration) if ¢ is an orientation-preserving diffeomorphism, then

/g;gf)*w:/ﬂlw, Vw e A™(Q)

Theorem, Stokes theorem:

If Q is an oriented n-manifold with boundary OS2, then

dwz/ Trw, VYwe A" HQ)
Q a0

5.3. Exterior Calculus on manifolds and Differential forms 25
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Theorem, Integration by parts:

If Q) is an oriented n-manifold with boundary 0f2, then

/den=(—1)’“‘1/wAdn+/ TrwATry, VweA¥(Q),ne A" Q)
Q Q o0

5.4 Sobolev spaces of differential forms

As for the classical case, we can define the Sobolev spaces as:
o H*A*(Q) is the space of differential k-forms such that £F € H*(Q).
o HAF(Q) = {w € L2A*(Q), dw € L2A*T1(Q)}. The associated norm is :

lwllZrae = llwlifra = lwllZzae + ldwllFzpes
s HA®() coincides with H'A%(€2),
» HA™(Q) coincides with L2A™(2),
s for 0 < k < n, we have H'A*(Q) ¢ HAF(Q) C L2A*(Q), strictly.

k AF HAF dw Jrw Kw

0 Cco H! Vw w(f) 0

1 | C®(R3) H(rot,R3) rotw ffw-td'Hl zr— x - w(x)
2 | C>*(R?) H(div,R3?) divw ffw ndHy zr—— xXw(x)
3 Cco® L? 0 ff wd Hs T — zw(z)

5.5 Cohomology and De Rham Complex

The De Rham complex is the sequence of spaces and mappings
0— A%Q) L AN Q) L L AMQ) — 0

Since, d od = 0, we have

R(d : AF7HQ) — A*(Q)) C N(d : A*(Q) — AFTL(Q))
If Q) is an oriented Riemannian manifold, we have the following cohomology:

0 — HAYQ) L5 HAYNQ) L - 4 HAM(Q) — 0
The coderivative operator § : A*(2) — A*~1(Q) is defined as:
*ow = (—1)*d xw, we AF(Q)

e we have

26 Chapter 5. Exterior Algebra



spl Documentation, Release 1

(dw,n)z(w,én)%—/ TrwATrn, Ywe ARF(Q),ne A*(Q),
o9

* ¢ is a graded linear operator of degree —1.
* ¢ is the formal adjoint of d whenever w or 7 vanishes near the boundary.

» we define the spaces

H*A*(Q) = {w € L?A*(Q), dw e L2A*1(Q)}.

we have H*A*(Q) = xHA"*(Q).

* we obtain the dual complex
0+— H*A(Q) <& H*AY(Q) & - <& H*A™(Q) +— 0

5.6 Cohomology with boundary conditions

Let A () be the subspace of A¥(Q) of smooth k-forms with compact support. We have d Af ¢ AST!.
The De Rham complex with the compact support is
0— AQ) S A ) L L ArQ) — 0
Recall that the closure of AX(Q) in HA*(Q) is
HoAF(Q) = {w € HAF(Q), Trw = 0}.

The L? version of the last complex is

0 — HoA%(Q) -5 HoAY(Q) -5 -+ 5 HoA™(Q) — 0

Definition, Harmonic forms:

The harmonic k-forms are the differential k£-forms that verify the differential equations

dw= 0,
dw= 0,
Trxw= 0.

this defines the following space,

H*(Q) = {w e HAF(Q) N HFAR(Q), dw=0,6w =0}

We can also define the following space,
HE(Q) = {w € HiA*(Q) N H*A*(Q), dw =0,6w = 0}

As we can see, xH* () = H07F(Q).

5.6. Cohomology with boundary conditions 27
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Proposition, Poincaré duality:

There is an isomorphism between the k£ th De Rham cohomology space and the (n — k) th cohomology space with
boundary conditions.

5.7 Homological Algebra and Hilbert complexes

5.7.1 Homological Algebra

* A cochain complex is a sequence of vector spaces and linear maps

o k-cocycles 3% := N (dy),

* k-coboundaries B* := R(dy_1),

* k-cohomology H* (V) := 3% /BF,

* we say that the sequence is exact, if the cohomology vanishes (i.e. V k, H*(V) = {0}),

* Given two cochain complexes V, V', a cochain map f = (fi) (such as d} fr = fr+1dx)

dr—1 d
— Vi — Vi — Vg — -
U / 4 fr 4 fr

! dk_l / d;“ /
— Vi — Vi — Vi —

* f maps k-cochains to k-cochains and k-coboundaries to k-coboundaries, thus induces a map H*(f)
HE (V) — HE (V).
Let V' C V be two cochain complexes,
* The inclusion 2y is a cochain map and thus induces a map of cohomology H* (V') —s Hk(V),

» If there exists a cochain projection of V onto V’, (this leads to 7 0 ¢« = id y) so H¥(7) o H¥(2) = id HE(VT)-

dr_1
— Vie—1 — Vi — e
14T e 4T
dr_1
— Vi, — v/ —

Thus, H*(2) is injective and " () is surjective. Hence, if one of the cohomology spaces ¥ (V') vanishes, then so
does H* (V")

5.7.2 Cycles and boundaries of the De Rham complex
* k-cocycles
3F = {we HAFQ), dw=0}, 3" ={we H'A*Q), dw =0},
3% ={w e HoA®(Q), dw =0}, 33F={we HA*Q), dw =0},

¢ k-coboundaries

28 Chapter 5. Exterior Algebra
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BF = dHAP1(Q), B*F = sAFT1(Q),
B = dHoA" (), B = 0A5+H(Q),
» each of the spaces of cycles is closed in HA¥(Q) (H*A*(Q)), as well in L2A* ().

» each of the spaces of boundaries is closed in L2A*((2).

* let L denotes the orthogonal complement in L2A*(€2),

3/61_ C %kj_ _ ;;k, S*Iﬂ_ C %*kJ_ _ 3§

kLl kLl _ 9k wk L *kl _ 9k
0 C%O *3 ) 0 C%0 *3

5.7.3 The Hodge decomposition

There are two Hodge decompositions, with different boundary conditions,

1.

Sk:%akL 3kl

L*A*(Q) = 8% o a* @Bk = B* @ 9ok o B*

kL
38 sak:%kL

3k=mrkl 3k

L2AF(Q) = Bf @5 ® B = BF © H50 B
~N

kL 3rk =gkt
5.8 Summary
wF e AF(Q) k=0 k=1 k=2 k=3
dwF Vu V xu V-u —
Sk — —V-.u V xu —Vu
igwk - B-u uxpg u3
jgwk uf3 —uxpg B-u _
Lguw* B-Vu V(B -u)+(Vxu)xpg Vx(uxpB)+pV-u V- (uB)
Lgwk -V-wB) | -=Vx(uxB)—pBV-u | -V(B-u)—(Vxu)xp| -8 -Vu
trwF u(x) u(x) x n(x) u(x) - n(x) —
HAF(Q) HI(Q) H (curl, Q) H (div, Q) L*(Q)
Vi Vi (grad, §2) Vi (curl, ) Vi (div, Q) Vi(L?,9Q)
References
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DeRham sequences

here without boundary conditions

R < H'(Q) —Y— H(curl, Q) —2— H(div,Q) ——— L*(Q) — 0

6.1 Pullbacks

In the case where the physical domain 2 := F (Q) is the image of a logical domain by a smooth mapping F (at
least C1), we have the following parallel diagrams

HYQ) —Y— H(curl,Q) —2— H(div,Q) —Y— L2(Q)
HY(Q) —Y— H(eurl, Q) —2— H(div,Q) —Y— L2(Q)

Where the mappings 2°,2', 12 and +3 are called pullbacks and are given by

where DF is the jacobian matrix of the mapping F.

Note: The pullbacks 1°,1',1? and 2% are isomorphisms between the corresponding spaces.

31
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6.2 Discrete Spaces

Let us suppose that we have a sequence of finite subspaces for each of the spaces involved in the DeRham sequence.
The discrete DeRham sequence stands for the following commutative diagram between continuous and discrete spaces

HY(Q) —Y— H(curl, Q) — 5 H(div,Q) ——  L2(Q)
H%rad[ H%url{ H%iv J H,I;Q [
Vi(grad, Q) —Y— Vi(eurl, Q) —YX 5 V,(div,Q) —Y— Vi(L2,Q)

When using a Finite Elements methods, we often deal with a reference element, and thus we need also to apply the
pullbacks on the discrete spaces. In fact, we have again the following parallel diagram

Vi(grad, Q) —Y— Vi(eurl, Q) —YX % V,(div,Q) ——— Vi(L2,9)
201\ ’Ll[ 22]\ 23]\
Vi(grad, Q) —Y— Vi(eurd, Q) —Z— Vi(div,Q) ——— Vi(L2,9Q)

Since, the pullbacks are isomorphisms in the previous diagram, we can define a one-to-one correspondance
¢ =", ¢¢€ Vi (grad, Q),é € Vi (grad, Q)
U :='0, U e V,(curl,Q),¥ e V(curl, Q)
B :=2d, B e V,(div,Q), d € V;(div, Q)
p ::’Lgﬁa pE Vh(L27Q>7ﬁ € Vh(L27Q>
We have then, the following results
Vo =1'Vo, ¢ € Vi(grad,Q)
VxU=>VxW¥, UeV,(urlQ)
V-®=>V.d, & eV,(div,Q)

6.3 Projectors

In some cases, one may need to define projectors on smooth functions

CX(Q) —Y Q) —X 02(Q) —L Q)

H%rad[ H%url{ H%iv J H,I;Q [

Vi(grad, Q) —Y— Vi(eurl, Q) —YX 5 V,(div,Q) —Y— Vi(L2,Q)
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6.4 Discrete DeRham sequence for B-Splines

Buffa et al /BSV09] show the construction of a discrete DeRham sequence using B-Splines, (here without boundary
conditions)

HY(Q) —Y— H(uwl,Q) —Y* 5  Hdiv,Q) —Y—  L%(Q)
H}glrad H%url H?Liv Hﬁz [
Sp—Llp.p Sp.p—1,p—1
geor VY o |gpp-tp| VX o [gp-lpp-1| V. gp-lp-lp-1
Spp:p—1 Sp—Lp—1,p
6.4.1 1d case
1. DeRham sequence is reduced to
R S —Y 5 sl 0
-~ ——
Vi (grad,) Vi (L2,8)
2. The recursion formula for derivative writes
NP'(t) = DY (t) = DY, (¢) where  DY(t) = ————N"'(1)
t7,+p+1 t;

3. we have SP~1 = span{Nip_l, 1<i<n-—1}=span{D? 1 <i<n—1} whichis achange of basis as a
diagonal matrix

4. Now if u € SP, with and expansion u = 27 uiNip, we have

u = ZUZ (Nl?”)/ = Z(fui—l +u) Dy

(2

5. If we introduce the B-Splines coefficients vector u := (u;),,,, (and u* for the derivative), we have
u* = Du

where D is the incidence matrix (of entries —1 and +1)

Discrete derivatives:

6.4.2 2d case

In 2d, the are two De-Rham complexes:

HY(Q) —Y— H(ul,Q) —X 5  L2(Q)
1-I}glrad qurl[ I ﬁ2
Vi (grad, §2) -y, Vi, (curl, 2) _vx Vi(L?,9Q)

6.4. Discrete DeRham sequence for B-Splines 33



spl Documentation, Release 1

and

HY(Q) —Y % H(div,Q) —Y—  L%(Q)

| w| o)

Vi(grad, Q) —Y—  V(div,Q) ——— Vi(L2,Q)

Let I be the identity matrix, we have

Discrete derivatives:

D&l
9= (I@D)

(I®D - .
C= (D ® I) [scalarcurl], C=(—I®D D®I) [vectorial curl]

D=(D®l I®D)

6.4.3 3d case

Discrete derivatives:

DI®I
G=|I®Dx®I
I®RI®D
0 —I®I®D I®D®I
C=\| 1I®I®D 0 -DRI®I
—I®D®I DRIKI 0

D=(DeoI®l IeD®I I®I®D)

Note: From now on, we will denote the discrete derivative by Dy, for the one going from Vj, to Vi 1.

6.5 Algebraic identities

Let us consider the discretization of the exterior derivative
W = dwk
multiplying by a test function 7**! and integrating over the whole computation domain, we get

(nk+1’ wk+1) _ (,’,}kJrl7 dwk)

k+1 k+1
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let EF+1 W* and W*+! be the vector representation of n*+1, w* and w*+!'. We get

k+1T k+1 k+1T k
EMY My W = EMYY Dy W

where

Diyy1r = ((Ufﬂ’dwf)kﬂ)

4,7
On the other hand, using the coderivative, we get

(nk+1vwk+1)k+1 = (on"",w"), + BC

Let us now introduce the following matrix

Dy k+1 = ((5775+1, wf)k) y

hence,
k+1T k_ (D* k+1\T k
E**Y Dy WF = (Df EMY T MW

Therefor, we have the following important result

Proposition:

* Diy1x = Dy g1 + BC

* Dyi1 = MDY

* Dy i1 =Dp " My

References

6.5. Algebraic identities

35



spl Documentation, Release 1

36 Chapter 6. DeRham sequences



CHAPTER /

API

You will find here both the Fortran doxygen documentation as well as the Python-API.

7.1 Fortran API

7.2 Python API

7.2.1 spl package

Subpackages

spl.core package
Submodules
spl.core.basic module
Module contents

Submodules
spl.mapping module
spl.utilities module

Module contents

37
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Indices and tables

* genindex
* modindex

e search
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