
spl Documentation
Release 1

A. Ratnani, J. Lakhlili

Mar 15, 2018

Contents:

1 First Steps with SPL 3

2 Dive into SPL 5

3 B-Splines and NURBS 7

4 GLT 19

5 Exterior Algebra 21

6 DeRham sequences 31

7 API 37

8 Indices and tables 39

Bibliography 41

i

ii

spl Documentation, Release 1

SPL is a Python/Fortran 2003 library for B-Splines/NURBS and Computer Aided Design Algorithms.

SPL can be used in three different ways:

1. Fortran 90/95 subroutines through the file fortran/src/bsplines/bspline.F90

2. Fortran 2003 objects, mainly the mapping and cad objects

3. The same objects as in 2. but through Python

Contents: 1

spl Documentation, Release 1

2 Contents:

CHAPTER 1

First Steps with SPL

This document is meant to give a tutorial-like overview of SPL.

The green arrows designate “more info” links leading to advanced sections about the described task.

By reading this tutorial, you’ll be able to:

• compile a simple SPL file

• get familiar with parallel programing paradigms

• create, modify and build a SPL project.

1.1 Install SPL

1.2 Examples

In this section, we describe some features of SPL on simple examples.

See script.

3

spl Documentation, Release 1

4 Chapter 1. First Steps with SPL

CHAPTER 2

Dive into SPL

2.1 Contents

2.1.1 Introduction

2.1.2 Input and Output

5

spl Documentation, Release 1

6 Chapter 2. Dive into SPL

CHAPTER 3

B-Splines and NURBS

We start this section by recalling some basic properies about B-splines curves and surfaces. We also recall some
fundamental algorithms (knot insertion and degree elevation).

For a basic introduction to the subject, we refer to the books [LP95] and [Far02].

A B-Splines family, (𝑁𝑖)16𝑖6𝑛 of order 𝑘, can be generated using a non-decreasing sequence of knots 𝑇 =
(𝑡𝑖)16𝑖6𝑛+𝑘.

3.1 B-Splines series

The j-th B-Spline of order 𝑘 is defined by the recurrence relation:

𝑁𝑘
𝑗 = 𝑤𝑘

𝑗𝑁
𝑘−1
𝑗 + (1− 𝑤𝑘

𝑗+1)𝑁𝑘−1
𝑗+1

where,

𝑤𝑘
𝑗 (𝑥) =

𝑥− 𝑡𝑗
𝑡𝑗+𝑘−1 − 𝑡𝑗

𝑁1
𝑗 (𝑥) = 𝜒[𝑡𝑗 ,𝑡𝑗+1[(𝑥)

for 𝑘 ≥ 1 and 1 ≤ 𝑗 ≤ 𝑛.

We note some important properties of a B-splines basis:

• B-splines are piecewise polynomial of degree 𝑝 = 𝑘 − 1,

• Compact support; the support of 𝑁𝑘
𝑗 is contained in [𝑡𝑗 , 𝑡𝑗+𝑘] ,

• If 𝑥 ∈]𝑡𝑗 , 𝑡𝑗+1[, then only the B-splines {𝑁𝑘
𝑗−𝑘+1, · · · , 𝑁𝑘

𝑗 } are non vanishing at 𝑥,

• Positivity: ∀𝑗 ∈ {1, · · · , 𝑛} 𝑁𝑗(𝑥) > 0, ∀𝑥 ∈]𝑡𝑗 , 𝑡𝑗+𝑘[,

• Partition of unity
∑︀𝑛

𝑖=1 𝑁
𝑘
𝑖 (𝑥) = 1,∀𝑥 ∈ R,

• Local linear independence,

• If a knot 𝑡𝑖 has a multiplicity 𝑚𝑖 then the B-spline is 𝒞(𝑝−𝑚𝑖) at 𝑡𝑖.

7

spl Documentation, Release 1

3.2 Knots vector families

There are two kind of knots vectors, called clamped and unclamped. Both families contains uniform and non-
uniform sequences.

The following are examples of such knots vectors

1. Clamped knots (open knots vector)

• uniform

𝑇1 = {0, 0, 0, 1, 2, 3, 4, 5, 5, 5}
𝑇2 = {−0.2,−0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 0.8}

• non-uniform

8 Chapter 3. B-Splines and NURBS

spl Documentation, Release 1

𝑇3 = {0, 0, 0, 1, 3, 4, 5, 5, 5}
𝑇4 = {−0.2,−0.2, 0.4, 0.6, 0.8, 0.8}

2. Unclamped knots

• uniform

𝑇5 = {0, 1, 2, 3, 4, 5, 6, 7}
𝑇6 = {−0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0}

3.2. Knots vector families 9

spl Documentation, Release 1

• non-uniform

𝑇7 = {0, 0, 3, 4, 7, 8, 9}
𝑇8 = {−0.2, 0.2, 0.4, 0.6, 1.0, 2.0, 2.5}

10 Chapter 3. B-Splines and NURBS

spl Documentation, Release 1

3.3 B-Spline curve

The B-spline curve in R𝑑 associated to knots vector 𝑇 = (𝑡𝑖)16𝑖6𝑛+𝑘 and the control polygon (P𝑖)16𝑖6𝑛 is defined
by :

𝒞(𝑡) =

𝑛∑︁
𝑖=1

𝑁𝑘
𝑖 (𝑡)P𝑖

In (Fig. ref{figBSplineCurve}), we give an example of a quadratic B-Spline curve, and its corresponding knot vector
and control points.

3.3. B-Spline curve 11

spl Documentation, Release 1

We have the following properties for a B-spline curve:

• If 𝑛 = 𝑘, then 𝒞 is just a B’ezier-curve,

• 𝒞 is a piecewise polynomial curve,

• The curve interpolates its extremas if the associated multiplicity of the first and the last knot are maximum (i.e.
equal to 𝑘), i.e. open knot vector,

• Invariance with respect to affine transformations,

• Strong convex-hull property:

if 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1, then 𝒞(𝑡) is inside the convex-hull associated to the control points P𝑖−𝑝, · · · ,P𝑖,

• Local modification : moving the 𝑖𝑡ℎ control point P𝑖 affects 𝒞(𝑡), only in the interval [𝑡𝑖, 𝑡𝑖+𝑘],

• The control polygon approaches the behavior of the curve.

12 Chapter 3. B-Splines and NURBS

spl Documentation, Release 1

Note: In order to model a singular curve, we can use multiple control points : P𝑖 = P𝑖+1.

3.4 Multivariate tensor product splines

Let us consider 𝑑 knot vectors 𝒯 = {𝑇 1, 𝑇 2, · · · , 𝑇 𝑑}. For simplicity, we consider that these knot vectors are open,
which means that 𝑘 knots on each side are duplicated so that the spline is interpolating on the boundary, and of
bounds 0 and 1. In the sequel we will use the notation 𝐼 = [0, 1]. Each knot vector 𝑇 𝑖, will generate a basis for
a Schoenberg space, 𝒮𝑘𝑖

(𝑇 𝑖, 𝐼). The tensor product of all these spaces is also a Schoenberg space, namely 𝒮k(𝒯),
where k = {𝑘1, · · · , 𝑘𝑑}. The cube 𝒫 = 𝐼𝑑 = [0, 1]𝑑, will be referred to as a patch.

The basis for 𝒮k(𝒯) is defined by a tensor product :

𝑁k
i := 𝑁𝑘1

𝑖1
⊗𝑁𝑘2

𝑖2
⊗ · · · ⊗𝑁𝑘𝑑

𝑖𝑑

where, i = {𝑖1, · · · , 𝑖𝑑}.

A typical cell from 𝒫 is a cube of the form : 𝑄i = [𝜉𝑖1 , 𝜉𝑖1+1]⊗ · · · ⊗ [𝜉𝑖𝑑 , 𝜉𝑖𝑑+1].

3.5 Deriving a B-spline curve

The derivative of a B-spline curve is obtained as:

𝒞′(𝑡) =

𝑛∑︁
𝑖=1

𝑁𝑘
𝑖

′
(𝑡)P𝑖 =

𝑛∑︁
𝑖=1

(︂
𝑝

𝑡𝑖+𝑝 − 𝑡𝑖
𝑁𝑘−1

𝑖 (𝑡)P𝑖 −
𝑝

𝑡𝑖+1+𝑝 − 𝑡𝑖+1
𝑁𝑘−1

𝑖+1 (𝑡)P𝑖

)︂
=

𝑛−1∑︁
𝑖=1

𝑁𝑘−1
𝑖

*
(𝑡)Q𝑖

where Q𝑖 = 𝑝 P𝑖+1−P𝑖

𝑡𝑖+1+𝑝−𝑡𝑖+1
, and {𝑁𝑘−1

𝑖

*
, 1 ≤ 𝑖 ≤ 𝑛 − 1} are generated using the knot vector 𝑇 *, which is obtained

from 𝑇 by reducing by one the multiplicity of the first and the last knot (in the case of open knot vector), i.e. by
removing the first and the last knot.

More generally, by introducing the B-splines family {𝑁𝑘−𝑗
𝑖

*
, 1 ≤ 𝑖 ≤ 𝑛 − 𝑗} generated by the knots vector 𝑇 𝑗*

obtained from 𝑇 by removing the first and the last knot 𝑗 times, we have the following result:

3.5.1 proposition

The 𝑗𝑡ℎ derivative of the curve 𝒞 is given by

𝒞(𝑗)(𝑡) =

𝑛−𝑗∑︁
𝑖=1

𝑁𝑘−𝑗
𝑖

*
(𝑡)P

(𝑗)
𝑖 ‘

where, for 𝑗 > 0

P
(𝑗)
𝑖 =

𝑝− 𝑗 + 1

𝑡𝑖+𝑝+1 − 𝑡𝑖+𝑗

(︁
P

(𝑗−1)
𝑖+1 −P

(𝑗−1)
𝑖

)︁
and P

(0)
𝑖 = P𝑖.

By denoting 𝒞′ and 𝒞′′ the first and second derivative of the B-spline curve 𝒞, it is easy to show that:

We have,

• 𝒞′(0) = 𝑝
𝑡𝑝+2

(P2 −P1),

3.4. Multivariate tensor product splines 13

spl Documentation, Release 1

• 𝒞′(1) = 𝑝
1−𝑡𝑛

(P𝑛 −P𝑛−1),

• 𝒞′′(0) = 𝑝(𝑝−1)
𝑡𝑝+2

(︁
1

𝑡𝑝+2
P1 − { 1

𝑡𝑝+2
+ 1

𝑡𝑝+3
}P2 + 1

𝑡𝑝+3
P3

)︁
,

• 𝒞′′(1) = 𝑝(𝑝−1)
1−𝑡𝑛

(︁
1

1−𝑡𝑛
P𝑛 − { 1

1−𝑡𝑛
+ 1

1−𝑡𝑛−1
}P𝑛−1 + 1

1−𝑡𝑛−1
P𝑛−2

)︁
.

3.5.2 Example

Let us consider the quadratic B-spline curve associated to the knots vector 𝑇 = {000 2
5

3
5 111} and the control points

{𝑃𝑖, 1 ≤ 𝑖 ≤ 5}:

𝒞(𝑡) =

5∑︁
𝑖=1

𝑁3
𝑖
′
(𝑡)P𝑖

we have,

𝒞′(𝑡) =

4∑︁
𝑖=1

𝑁2
𝑖
*
(𝑡)Q𝑖

where

Q1 = 5{P2 −P1}, Q2 =
10

3
{P3 −P2},

Q3 =
10

3
{P4 −P3}, Q4 = 5{P5 −P4}.

The B-splines {𝑁2
𝑖
*
, 1 ≤ 𝑖 ≤ 4} are associated to the knot vector 𝑇 * = {00 2

5
3
5 11}.

Fundamental geometric operations

By inserting new knots into the knot vector, we add new control points without changing the shape of the B-Spline
curve. This can be done using the DeBoor algorithm [dB01]. We can also elevate the degree of the B-Spline family
and keep unchanged the curve [HHM05]. In (Fig. ref{refinement_curve_B_Spline}), we apply these algorithms on a
quadratic B-Spline curve and we show the position of the new control points.

3.6 Knot insertion

After modification, we denote by ̃︀𝑛,̃︀𝑘, ̃︀𝑇 the new parameters. (Q𝑖) are the new control points.

One can insert a new knot 𝑡, where 𝑡𝑗 6 𝑡 < 𝑡𝑗+1. For this purpose we use the DeBoor algorithm [dB01]:

̃︀𝑛 = 𝑛 + 1̃︀𝑘 = 𝑘̃︀𝑇 = {𝑡1, .., 𝑡𝑗 , 𝑡, 𝑡𝑗+1, .., 𝑡𝑛+𝑘}

𝛼𝑖 =

⎧⎨⎩
1 1 6 𝑖 6 𝑗 − 𝑘 + 1

𝑡−𝑡𝑖
𝑡𝑖+𝑘−1−𝑡𝑖

𝑗 − 𝑘 + 2 6 𝑖 6 𝑗

0 𝑗 + 1 6 𝑖

Q𝑖 = 𝛼𝑖P𝑖 + (1− 𝛼𝑖)P𝑖−1

Many other algorithms exist, like blossoming for fast insertion algorithm. For more details about this topic, we refer
to [NT93].

14 Chapter 3. B-Splines and NURBS

spl Documentation, Release 1

3.7 Order elevation

We can elevate the order of the basis, without changing the curve. Several algorithms exist for this purpose. We used
the one by Huang et al. [PP91], [HHM05].

A quadratic B-spline curve and its control points. The knot vector is 𝑇 = {000, 1
4 ,

1
2 ,

3
4 , 111}.

The curve after a h-refinement by inserting the knots {0.15, 0.35} while the degree is kept equal to 2.

The curve after a p-refinement, the degree was raised by 1 (using cubic B-splines).

3.7. Order elevation 15

spl Documentation, Release 1

The curve after duplicating the multiplicity of the internal knots { 14 ,
1
2 ,

3
4}, this leads to a B’ezier description. We can

then, split the curve into 4 pieces (sub-domains), each one will corresponds to a quadratic B’ezier curve.

3.8 Translation

3.9 Rotation

Todo: not yet available

16 Chapter 3. B-Splines and NURBS

spl Documentation, Release 1

3.10 Scaling

Todo: not yet available

References

3.10. Scaling 17

spl Documentation, Release 1

18 Chapter 3. B-Splines and NURBS

CHAPTER 4

GLT

4.1 Where do the GLTs come from?

The main aim of this paragraph is to present a crucial example that highlights the importance of the GLT algebra when
dealing with linear systems coming from the discretization of PDEs. Let us start with some preliminaries. In detail,
we will recall the notion of symbol of a matrix-sequence and the basic idea behind the GLT theory.

4.1.1 Spectral preliminaries

The following one is a rather informal definition of symbol of a matrix-sequence.

example:

When 𝑑𝑛 = 𝑛, 𝑑 = 1, 𝐷 = [0, 𝜋], {𝐴𝑛}𝑛 ∼𝜆 𝑓 means

References

19

spl Documentation, Release 1

20 Chapter 4. GLT

CHAPTER 5

Exterior Algebra

Let 𝑉 be a real vector space of dimension 𝑛.

Definition, Alternating algebraic forms:

For each 𝑘, we define Alt 𝑘𝑉 as the space of alternating 𝑘-linear maps 𝑉 × · · · × 𝑉 → R.

Note:

• Alt 0 = R,

• Alt 1 = 𝑉 * is the dual space of 𝑉 (the space of covectors)

Definition, Exterior product:

For 𝜔 ∈ Alt 𝑗 and 𝜂 ∈ Alt 𝑘, their exterior (wedge) product is given by:

(𝜔 ∧ 𝜂)(𝑣1, · · · , 𝑣𝑗+𝑘) =
∑︁
𝜎

(sign 𝜎)𝜔(𝑣𝜎(1), · · · , 𝑣𝜎(𝑗))𝜂(𝑣𝜎(𝑗+1), · · · , 𝑣𝜎(𝑗+𝑘))

for all 𝑣𝑖 ∈ 𝑉 . Where the sum is over all permutations 𝜎 of {1, · · · , 𝑗 + 𝑘}, for which 𝜎(1) < · · · < 𝜎(𝑗) and
𝜎(𝑗 + 1) < · · · < 𝜎(𝑗 + 𝑘).

Note:

• The exterior product is bilinear, associative,

• anti-commutative: 𝜂 ∧ 𝜔 = (−1)𝑗𝑘𝜔 ∧ 𝜂 for all 𝜔 ∈ Alt 𝑗 and 𝜂 ∈ Alt 𝑘.

21

spl Documentation, Release 1

Definition, Grassmann Algebra:

Grassmann Algebra is defined by:

Alt𝑉 :=
⨁︁
𝑘

Alt 𝑘𝑉

This is a anti-commutative graded algebra. Also called Exterior Algebra of 𝑉 *

In the case of 𝑉 = R𝑛, we have:

• Alt𝑉 0 ∼ R,

• Alt𝑉 1 ∼ R𝑛,

• Alt𝑉 𝑛−1 ∼ R𝑛, using Riesz representation theorem,

• Alt𝑉 𝑛 ∼ R, using the map 𝑣 ↦−→ det(𝑣, 𝑣1, · · · , 𝑣𝑛−1).

5.1 Basis

Let 𝑣1, · · · , 𝑣𝑛 be a basis of 𝑉 and 𝜇1, · · · , 𝜇𝑛 the associated dual basis for 𝑉 * (𝜇𝑖(𝑣𝑗) = 𝛿𝑖𝑗).

For any increasing permutations 𝜎, 𝜌 : {1, · · · , 𝑘} −→ {1, · · · , 𝑛}, we have:

𝜇𝜎(1) ∧ · · · ∧ 𝜇𝜎(𝑘)(𝑣𝜌(1), · · · , 𝑣𝜌(𝑘)) = 𝜒𝜎,𝜌

thus the
(︀
𝑛
𝑘

)︀
algebraic 𝑘-forms 𝜇𝜎(1) ∧ · · · ∧ 𝜇𝜎(𝑘), form a basis for Alt 𝑘𝑉 and dim Alt 𝑘𝑉 =

(︀
𝑛
𝑘

)︀
.

Definition, Interior product:

Let 𝜔 be a 𝑘-form, and 𝑣 ∈ 𝑉 . The interior product of 𝜔 and 𝑣 is the (𝑘 − 1)-form 𝜔y𝑣 defined by:

𝜔y𝑣(𝑣1, · · · , 𝑣𝑘−1) = 𝜔(𝑣, 𝑣1, · · · , 𝑣𝑘−1)

• We have for 𝜔 ∈ Alt 𝑘𝑉 , 𝜂 ∈ Alt 𝑙𝑉 and 𝑣 ∈ 𝑉 :

(𝜔 ∧ 𝜂)y𝑣 = (𝜔y𝑣) ∧ 𝜂 + (−1)𝑘𝜔 ∧ (𝜂y𝑣)

Definition, Inner product:

If 𝑉 is has an inner product, then Alt 𝑘𝑉 is endowed with an inner product given by:

(𝜔, 𝜂) =
∑︁
𝜌

𝜔(𝑣𝜌(1), · · · , 𝑣𝜌(𝑘))𝜂(𝑣𝜌(1), · · · , 𝑣𝜌(𝑘)), ∀𝜔, 𝜂 ∈ Alt 𝑘𝑉.

where the sum is over increasing sequences 𝜌 : {1, · · · , 𝑘} −→ {1, · · · , 𝑛}, and 𝑣1, · · · , 𝑣𝑛 is any orthonormal
basis.

5.2 Orientation and Volume form

22 Chapter 5. Exterior Algebra

spl Documentation, Release 1

Todo: add Orientation and Volume form

Definition, Pullback:

A linear transformation of vector spaces 𝐿 : 𝑉 → 𝑊 induces a transformation 𝐿* : Alt𝑊 → Alt𝑉 , called the
pullback, and given by:

𝐿*𝜔(𝑣1, · · · , 𝑣𝑘) = 𝜔(𝐿𝑣1, · · · , 𝐿𝑣𝑘), ∀𝜔 ∈ Alt 𝑘𝑊, 𝑣1, · · · , 𝑣𝑘 ∈ 𝑉

• The pullback acts contravariantly: if 𝑈 𝐾−−→ 𝑉
𝐿−−→𝑊 then,

Alt𝑊
𝐾*

−−−→ Alt𝑉
𝐿*

−−→ Alt𝑈

• 𝐿*(𝜔 ∧ 𝜂) = 𝐿*𝜔 ∧ 𝐿*𝜂

Let V be a subspace of W. For the inclusion 𝚤𝑉 : 𝑉 −→ 𝑊 , we can define its pullback 𝚤*𝑉 : this is a surjection of
Alt𝑊 onto Alt𝑉 .

If W has an inner product and 𝜋𝑉 : 𝑊 −→ 𝑉 is the orthogonal projection. We can define its pullback 𝜋*
𝑉 : this an

injection of Alt𝑉 onto Alt𝑊 .

Let us consider the composition : 𝑊 shortstack{𝜋𝑉 \ −→} 𝑉 shortstack{𝚤𝑉 \ −→} 𝑊 , and its pullback 𝜋*
𝑉 𝚤

*
𝑉 .

Definition, The tangential and normal parts:

• 𝜋*
𝑉 𝚤

*
𝑉 associates for each 𝜔 ∈ Alt 𝑘 its tangential part 𝜔‖ with respect to 𝑉 :

(𝜋*
𝑉 𝚤

*
𝑉 𝜔)(𝑣1, · · · , 𝑣𝑘) = 𝜔(𝜋𝑉 𝑣1, · · · , 𝜋𝑉 𝑣𝑘), ∀𝑣1, · · · , 𝑣𝑘 ∈𝑊.

• 𝜔 − 𝜋*
𝑉 𝚤

*
𝑉 𝜔 associates for each 𝜔 ∈ Alt 𝑘 its normal part 𝜔⊥ with respect to 𝑉 .

The tangential part of 𝜔 vanishes if and only if the image of 𝜔 in Alt 𝑘𝑉 vanishes.

Let 𝑉 be an oriented inner product space, with volume form vol. Let 𝜔 ∈ Alt 𝑘𝑉 . We can define a new linear map 𝐿𝜔

as the composition of Alt 𝑛−𝑘𝑉 −→ Alt 𝑛𝑉 such as:

𝜇 ↦−→ 𝜔 ∧ 𝜇

and the canonical isomorphism of Alt 𝑛𝑉 onto R, and using the Riesz representation theorem, there exists an element
⋆𝜔 ∈ Alt 𝑛−𝑘𝑉 such that : 𝐿𝜔(𝜇) = (⋆𝜔, 𝜇), i.e.:

𝜔 ∧ 𝜇 = (⋆𝜔, 𝜇)vol, 𝜔 ∈ Alt 𝑘, 𝜇 ∈ Alt 𝑛−𝑘

Definition, The Hodge star operation:

The linear map which maps Alt 𝑘𝑉 onto Alt 𝑛−𝑘𝑉 𝜔 ↦−→ ⋆𝜔 is called the Hodge star operator.

• If 𝑒1, · · · , 𝑒𝑛 is any positively oriented orthonormal basis, and 𝜎 a permutation, we have

𝜔(𝑒𝜎(1), · · · , 𝑒𝜎(𝑘)) = (sign𝜎) ⋆ 𝜔(𝑒𝜎(𝑘+1), · · · , 𝑒𝜎(𝑛))

• ⋆ ⋆ 𝜔 = (−1)𝑘(𝑛−𝑘)𝜔, ∀𝜔 ∈ Alt 𝑘𝑉 , thus the Hodge star is an isometry.

5.2. Orientation and Volume form 23

spl Documentation, Release 1

• (⋆𝜔)‖ = ⋆(𝜔⊥) and (⋆𝜔)⊥ = ⋆(𝜔‖)

• the image of ⋆𝜔 in Alt 𝑘𝑉 vanishes if and only if 𝜔⊥ vanishes.

Alt 0R3 ∼= R 𝑐↔ 𝑐
Alt 1R3 ∼= R3 𝑢1d𝑥1 + 𝑢2d𝑥2 + 𝑢3d𝑥3 ↔ 𝑢
Alt 2R3 ∼= R3 𝑢3d𝑥1 ∧ d𝑥2 − 𝑢2d𝑥1 ∧ d𝑥3 + 𝑢1d𝑥2 ∧ d𝑥3+↔ 𝑢
Alt 3R3 ∼= R 𝑐d𝑥1 ∧ d𝑥2 ∧ d𝑥3 ↔ 𝑐

∧ : Alt 1R3 ×Alt 1R3 −→ Alt 2R3 × : R3 × R3 −→ R3

∧ : Alt 1R3 ×Alt 2R3 −→ Alt 3R3 · : R3 × R3 −→ R

𝐿* : Alt 0R3 −→ Alt 0R3 id : R −→ R
𝐿* : Alt 1R3 −→ Alt 1R3 𝐿𝑇 : R3 −→ R3

𝐿* : Alt 2R3 −→ Alt 2R3 (det𝐿)𝐿−1 : R3 −→ R3

𝐿* : Alt 3R3 −→ Alt 3R3 (det𝐿) : R −→ R (𝑐 ↦−→ 𝑐det𝐿)

y𝑣 : Alt 1R3 −→ Alt 0R3 𝑣· : R3 −→ R
y𝑣 : Alt 2R3 −→ Alt 1R3 𝑣× : R3 −→ R3

y𝑣 : Alt 3R3 −→ Alt 2R3 𝑣 : R −→ R3 (𝑐 ↦−→ 𝑐𝑣)

inner product on Alt 𝑘R3 induced dot product on R and R3

by dot product on R3

vol = d𝑥1 ∧ d𝑥2 ∧ d𝑥3 (𝑣1, 𝑣2, 𝑣3) ↦−→ det(𝑣1|𝑣2|𝑣3)

⋆ : Alt 0R3 −→ Alt 3R3 id : R −→ R
⋆ : Alt 1R3 −→ Alt 2R3 id : R3 −→ R3

5.3 Exterior Calculus on manifolds and Differential forms

Let Ω be a smooth manifold, of dimension 𝑛.

• ∀𝑥 ∈ Ω we denote by 𝑇𝑥Ω the tangent space. This is a vector space of dimension 𝑛,

• tangent bundle {(𝑥, 𝑣), 𝑥 ∈ Ω, 𝑣 ∈ 𝑇𝑥Ω},

• Applying the exterior algebra to the tangent spaces, we obtain the exterior forms bundle, whose elements are
pairs (𝑥, 𝜇) with 𝑥 ∈ Ω and 𝜇 ∈ Alt 𝑘𝑇𝑥Ω.

• a differential 𝑘-form 𝜔 is a section of this bundle. This is a map which associates to each 𝑥 ∈ Ω an element
𝜔𝑥 ∈ Alt 𝑘𝑇𝑥Ω,

• if the map ℒ𝑘
𝜔 : 𝑥 ↦−→ 𝜔𝑥(𝑣1(𝑥), · · · , 𝑣𝑘(𝑥)) is smooth (whenever 𝑣𝑖 are smooth), we say that 𝜔 is a smooth

differential 𝑘-form,

• we define Λ𝑘(Ω) the space of all smooth 𝑘-forms on Ω,

• Λ0(Ω) = 𝒞∞(Ω),

• if the map ℒ𝑘
𝜔 is 𝒞𝑚(Ω), we define differential 𝑘-forms with less smoothness 𝒞𝑚Λ𝑘(Ω).

Let Ω be a smooth manifold, of dimension 𝑛.

Exterior product:

if 𝜔 ∈ Λ𝑘(Ω) and 𝜂 ∈ Λ𝑗(Ω), we may define 𝜔 ∧ 𝜂 as (𝜔 ∧ 𝜂)𝑥 = 𝜔𝑥 ∧ 𝜂𝑥 and the Grassmann algebra Λ(Ω) :=⨁︀
𝑘 Λ𝑘(Ω)

24 Chapter 5. Exterior Algebra

spl Documentation, Release 1

Differential forms can be differentiated and integrated, without recourse to any additional structure, such as a metric
or a measure.

Exterior differentiation:

For each 𝜔 ∈ Λ𝑘(Ω), can define the (𝑘 + 1)-form d𝜔 ∈ Λ𝑘+1(Ω), such as:

d𝜔𝑥(𝑣1, · · · , 𝑣𝑘+1) =

𝑘+1∑︁
𝑗=1

(−1)𝑗𝜕𝑣𝑗𝜔𝑥(𝑣1, · · · , 𝑣𝑗 , · · · , 𝑣𝑘+1)

where the hat is used to indicated a suppressed argument.

This defines a graded linear operator of degree +1, of Λ(Ω) onto Λ(Ω).

We have the following properties:

• d ∘ d = 0

• d (𝜔 ∧ 𝜂) = d𝜔 ∧ 𝜂 + (−1)𝑘𝜔 ∧ d 𝜂, ∀𝜔 ∈ Λ𝑘(Ω), 𝜂 ∈ Λ𝑗(Ω),

• (Pullback) let 𝜑 be a smooth map of Ω onto Ω′. Then 𝜑*(𝜔 ∧ 𝜂) = 𝜑*(𝜔) ∧ 𝜑*(𝜂) and 𝜑*(d𝜔) = d (𝜑*𝜔),

• (Interior product) the interior product of a differential 𝑘-form 𝜔 with a vector field 𝑣,

• we obtain a (𝑘 − 1)-form by : (𝜔y𝑣)𝑥 := 𝜔𝑥y𝑣𝑥,

• (Trace operator) the pullback 𝑖*𝜕Ω of 𝑖𝜕Ω is the trace operator Tr

Integration:

• If 𝑓 is an oriented, piecewise smooth 𝑘-dimensional submanifold of Ω, and 𝜔 is a continuous 𝑘-form, then th
integral

∫︀
𝑓
𝜔 is well defined :

– [0-forms] can be evaluated at points,

– [1-forms] can be integrated over directed curves,

– [2-forms] can be integrated over directed surfaces,

• (Inner product) The 𝐿2-inner product of two differential 𝑘-forms on an oriented Riemannian manifold Ω is
defined as :

(𝜔, 𝜂)𝐿2Λ𝑘 =

∫︁
Ω

(𝜔𝑥, 𝜂𝑥)vol =

∫︁
𝜔 ∧ ⋆𝜂

The completion of Λ𝑘(Ω) in the corresponding norm defines the Hilbert space 𝐿2Λ𝑘(Ω).

We have the following results:

• (Integration) if 𝜑 is an orientation-preserving diffeomorphism, then∫︁
Ω

𝜑*𝜔 =

∫︁
Ω′

𝜔, ∀𝜔 ∈ Λ𝑛(Ω′)

Theorem, Stokes theorem:

If Ω is an oriented 𝑛-manifold with boundary 𝜕Ω, then∫︁
Ω

d𝜔 =

∫︁
𝜕Ω

Tr𝜔, ∀𝜔 ∈ Λ𝑛−1(Ω)

5.3. Exterior Calculus on manifolds and Differential forms 25

spl Documentation, Release 1

Theorem, Integration by parts:

If Ω is an oriented 𝑛-manifold with boundary 𝜕Ω, then∫︁
Ω

d𝜔 ∧ 𝜂 = (−1)𝑘−1

∫︁
Ω

𝜔 ∧ d 𝜂 +

∫︁
𝜕Ω

Tr𝜔 ∧ Tr 𝜂, ∀𝜔 ∈ Λ𝑘(Ω), 𝜂 ∈ Λ𝑛−𝑘−1(Ω)

5.4 Sobolev spaces of differential forms

As for the classical case, we can define the Sobolev spaces as:

• 𝐻𝑠Λ𝑘(Ω) is the space of differential 𝑘-forms such that ℒ𝑘
𝜔 ∈ 𝐻𝑠(Ω).

• 𝐻Λ𝑘(Ω) = {𝜔 ∈ 𝐿2Λ𝑘(Ω), d𝜔 ∈ 𝐿2Λ𝑘+1(Ω)}. The associated norm is :

‖𝜔‖2𝐻Λ𝑘 = ‖𝜔‖2𝐻Λ := ‖𝜔‖2𝐿2Λ𝑘 + ‖d𝜔‖2𝐿2Λ𝑘+1

• 𝐻Λ0(Ω) coincides with 𝐻1Λ0(Ω),

• 𝐻Λ𝑛(Ω) coincides with 𝐿2Λ𝑛(Ω),

• for 0 < 𝑘 < 𝑛, we have 𝐻1Λ𝑘(Ω) ⊂ 𝐻Λ𝑘(Ω) ⊂ 𝐿2Λ𝑘(Ω), strictly.

𝑘 Λ𝑘 𝐻Λ𝑘 d𝜔
∫︀
𝑓
𝜔 𝜅𝜔

0 𝒞∞ 𝐻1 ∇𝜔 𝜔(𝑓) 0
1 𝒞∞(R3) 𝐻(rot ,R3) rot𝜔

∫︀
𝑓
𝜔 · 𝑡dℋ1 𝑥 ↦−→ 𝑥 · 𝜔(𝑥)

2 𝒞∞(R3) 𝐻(div ,R3) div𝜔
∫︀
𝑓
𝜔 · 𝑛dℋ2 𝑥 ↦−→ 𝑥× 𝜔(𝑥)

3 𝒞∞ 𝐿2 0
∫︀
𝑓
𝜔dℋ3 𝑥 ↦−→ 𝑥𝜔(𝑥)

5.5 Cohomology and De Rham Complex

The De Rham complex is the sequence of spaces and mappings

0 −−→ Λ0(Ω)
d−−→ Λ1(Ω)

d−−→ · · · d−−→ Λ𝑛(Ω) −−→ 0

Since, d ∘ d = 0, we have

ℛ(d : Λ𝑘−1(Ω) −→ Λ𝑘(Ω)) ⊂ 𝒩 (d : Λ𝑘(Ω) −→ Λ𝑘+1(Ω))

If Ω is an oriented Riemannian manifold, we have the following cohomology:

0 −−→ 𝐻Λ0(Ω)
d−−→ 𝐻Λ1(Ω)

d−−→ · · · d−−→ 𝐻Λ𝑛(Ω) −−→ 0

The coderivative operator 𝛿 : Λ𝑘(Ω) −→ Λ𝑘−1(Ω) is defined as:

⋆𝛿𝜔 = (−1)𝑘d ⋆ 𝜔, 𝜔 ∈ Λ𝑘(Ω)

• we have

26 Chapter 5. Exterior Algebra

spl Documentation, Release 1

(d𝜔, 𝜂) = (𝜔, 𝛿𝜂) +

∫︁
𝜕Ω

Tr𝜔 ∧ Tr 𝜂, ∀𝜔 ∈ Λ𝑘(Ω), 𝜂 ∈ Λ𝑘+1(Ω),

• 𝛿 is a graded linear operator of degree −1.

• 𝛿 is the formal adjoint of d whenever 𝜔 or 𝜂 vanishes near the boundary.

• we define the spaces

𝐻*Λ𝑘(Ω) = {𝜔 ∈ 𝐿2Λ𝑘(Ω), 𝛿𝜔 ∈ 𝐿2Λ𝑘−1(Ω)}.

we have 𝐻*Λ𝑘(Ω) = ⋆𝐻Λ𝑛−𝑘(Ω).

• we obtain the dual complex

0←−− 𝐻*Λ0(Ω)
𝛿←− 𝐻*Λ1(Ω)

𝛿←− · · · 𝛿←− 𝐻*Λ𝑛(Ω)←−− 0

5.6 Cohomology with boundary conditions

Let Λ𝑘
0(Ω) be the subspace of Λ𝑘(Ω) of smooth 𝑘-forms with compact support. We have d Λ𝑘

0 ⊂ Λ𝑘+1
0 .

The De Rham complex with the compact support is

0 −−→ Λ0
0(Ω)

d−−→ Λ1
0(Ω)

d−−→ · · · d−−→ Λ𝑛
0 (Ω) −−→ 0

Recall that the closure of Λ𝑘
0(Ω) in 𝐻Λ𝑘(Ω) is

𝐻0Λ𝑘(Ω) = {𝜔 ∈ 𝐻Λ𝑘(Ω), Tr𝜔 = 0}.

The 𝐿2 version of the last complex is

0 −−→ 𝐻0Λ0(Ω)
d−−→ 𝐻0Λ1(Ω)

d−−→ · · · d−−→ 𝐻0Λ𝑛(Ω) −−→ 0

Definition, Harmonic forms:

The harmonic 𝑘-forms are the differential 𝑘-forms that verify the differential equations⎧⎪⎨⎪⎩
d𝜔 = 0,

𝛿𝜔 = 0,

Tr ⋆ 𝜔 = 0.

this defines the following space,

H𝑘(Ω) = {𝜔 ∈ 𝐻Λ𝑘(Ω) ∩𝐻*
0Λ𝑘(Ω), d𝜔 = 0, 𝛿𝜔 = 0}

We can also define the following space,

H𝑘
0(Ω) = {𝜔 ∈ 𝐻0Λ𝑘(Ω) ∩𝐻*Λ𝑘(Ω), d𝜔 = 0, 𝛿𝜔 = 0}

As we can see, ⋆H𝑘(Ω) = H𝑛−𝑘
0 (Ω).

5.6. Cohomology with boundary conditions 27

spl Documentation, Release 1

Proposition, Poincaré duality:

There is an isomorphism between the 𝑘 th De Rham cohomology space and the (𝑛− 𝑘) th cohomology space with
boundary conditions.

5.7 Homological Algebra and Hilbert complexes

5.7.1 Homological Algebra

• A cochain complex is a sequence of vector spaces and linear maps

• 𝑘-cocycles Z𝑘 := 𝒩 (𝑑𝑘),

• 𝑘-coboundaries B𝑘 := ℛ(𝑑𝑘−1),

• 𝑘-cohomologyℋ𝑘(𝑉) := Z𝑘/B𝑘,

• we say that the sequence is exact, if the cohomology vanishes (i.e. ∀ 𝑘, ℋ𝑘(𝑉) = {0}),

• Given two cochain complexes 𝑉, 𝑉 ′, a cochain map 𝑓 = (𝑓𝑘) (such as d ′
𝑘𝑓𝑘 = 𝑓𝑘+1d 𝑘)

· · · −→ 𝑉𝑘−1

d 𝑘−1
−→ 𝑉𝑘

d 𝑘−→ 𝑉𝑘+1 −→ · · ·
↓ 𝑓𝑘−1 ↓ 𝑓𝑘 ↓ 𝑓𝑘+1

· · · −→ 𝑉 ′
𝑘−1

d ′
𝑘−1
−→ 𝑉 ′

𝑘

d ′
𝑘−→ 𝑉 ′

𝑘+1 −→ · · ·

• 𝑓𝑘 maps 𝑘-cochains to 𝑘-cochains and 𝑘-coboundaries to 𝑘-coboundaries, thus induces a map ℋ𝑘(𝑓) :
ℋ𝑘(𝑉) −→ ℋ𝑘(𝑉 ′).

Let 𝑉 ′ ⊂ 𝑉 be two cochain complexes,

• The inclusion 𝚤𝑉 is a cochain map and thus induces a map of cohomologyℋ𝑘(𝑉 ′) −→ ℋ𝑘(𝑉),

• If there exists a cochain projection of 𝑉 onto 𝑉 ′, (this leads to 𝜋 ∘ 𝚤 = id 𝑉 ′) soℋ𝑘(𝜋) ∘ ℋ𝑘(𝚤) = id ℋ𝑘(𝑉 ′).

· · · −→ 𝑉𝑘−1

d 𝑘−1
−→ 𝑉𝑘 −→ · · ·

𝜋𝑘−1 ↓↑ 𝚤 𝜋𝑘 ↓↑ 𝚤

· · · −→ 𝑉 ′
𝑘−1

d 𝑘−1
−→ 𝑉 ′

𝑘 −→ · · ·

Thus, ℋ𝑘(𝚤) is injective and ℋ𝑘(𝜋) is surjective. Hence, if one of the cohomology spaces ℋ𝑘(𝑉) vanishes, then so
doesℋ𝑘(𝑉 ′)

5.7.2 Cycles and boundaries of the De Rham complex

• 𝑘-cocycles

Z𝑘 = {𝜔 ∈ 𝐻Λ𝑘(Ω), d𝜔 = 0}, Z*𝑘 = {𝜔 ∈ 𝐻*Λ𝑘(Ω), 𝛿𝜔 = 0},

Z𝑘
0 = {𝜔 ∈ 𝐻0Λ𝑘(Ω), d𝜔 = 0}, Z*𝑘

0 = {𝜔 ∈ 𝐻*
0Λ𝑘(Ω), 𝛿𝜔 = 0},

• 𝑘-coboundaries

28 Chapter 5. Exterior Algebra

spl Documentation, Release 1

B𝑘 = d𝐻Λ𝑘−1(Ω), B*𝑘 = 𝛿Λ𝑘+1(Ω),

B𝑘
0 = d𝐻0Λ𝑘−1(Ω), B*𝑘

0 = 𝛿Λ𝑘+1
0 (Ω),

• each of the spaces of cycles is closed inℋΛ𝑘(Ω) (ℋ*Λ𝑘(Ω)), as well in 𝐿2Λ𝑘(Ω).

• each of the spaces of boundaries is closed in 𝐿2Λ𝑘(Ω).

• let ⊥ denotes the orthogonal complement in 𝐿2Λ𝑘(Ω),

Z𝑘⊥ ⊂ B𝑘⊥ = Z*𝑘
0 , Z*𝑘⊥ ⊂ B*𝑘⊥ = Z𝑘

0

Z𝑘⊥
0 ⊂ B𝑘⊥

0 = Z*𝑘, Z*𝑘⊥
0 ⊂ B*𝑘⊥

0 = Z𝑘

5.7.3 The Hodge decomposition

There are two Hodge decompositions, with different boundary conditions,

1.

𝐿2Λ𝑘(Ω) = B𝑘⏟ ⏞
Z*𝑘⊥
0

⊕H𝑘 ⊕B*𝑘
0⏟ ⏞

Z*𝑘
0 =B𝑘⊥

=

Z𝑘=B*𝑘⊥
0⏞ ⏟

B𝑘 ⊕ H𝑘 ⊕

Z𝑘⊥⏞ ⏟
B*𝑘

0

2.

𝐿2Λ𝑘(Ω) = B𝑘
0⏟ ⏞

Z*𝑘⊥

⊕H𝑘
0 ⊕B*𝑘⏟ ⏞

Z*𝑘=B𝑘⊥
0

=

Z𝑘
0=B*𝑘⊥⏞ ⏟

B𝑘
0 ⊕ H𝑘

0 ⊕

Z𝑘⊥
0⏞ ⏟

B*𝑘

5.8 Summary

𝜔𝑘 ∈ Λ𝑘(Ω) 𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3
d𝜔𝑘 ∇𝑢 ∇× u ∇ · u −
𝛿𝜔𝑘 − −∇ · u ∇× u −∇𝑢
i𝛽𝜔

𝑘 − 𝛽 · u u× 𝛽 𝑢𝛽
j𝛽𝜔

𝑘 𝑢𝛽 −u× 𝛽 𝛽 · u −
𝐿𝛽𝜔

𝑘 𝛽 ·∇𝑢 ∇ (𝛽 · u) + (∇× u)× 𝛽 ∇× (u× 𝛽) + 𝛽∇ · u ∇ · (𝑢𝛽)
ℒ𝛽𝜔

𝑘 −∇ · (𝑢𝛽) −∇× (u× 𝛽)− 𝛽∇ · u −∇ (𝛽 · u)− (∇× u)× 𝛽 −𝛽 ·∇𝑢
tr𝜔𝑘 𝑢(x) u(x)× n(x) u(x) · n(x) −

𝐻Λ𝑘(Ω) 𝐻1(Ω) 𝐻(curl,Ω) 𝐻(div,Ω) 𝐿2(Ω)
𝑉𝑘 𝑉ℎ(grad,Ω) 𝑉ℎ(curl,Ω) 𝑉ℎ(div,Ω) 𝑉ℎ(𝐿2,Ω)

References

5.8. Summary 29

spl Documentation, Release 1

30 Chapter 5. Exterior Algebra

CHAPTER 6

DeRham sequences

here without boundary conditions

R →˓ 𝐻1(Ω)
∇−−−−−→ 𝐻(curl,Ω)

∇×−−−−−−→ 𝐻(div,Ω)
∇·−−−−−→ 𝐿2(Ω) −−→ 0

6.1 Pullbacks

In the case where the physical domain Ω := ℱ(Ω̂) is the image of a logical domain Ω̂ by a smooth mapping ℱ (at
least 𝒞1), we have the following parallel diagrams

𝐻1(Ω)
∇−−−−−→ 𝐻(curl,Ω)

∇×−−−−−−→ 𝐻(div,Ω)
∇·−−−−−→ 𝐿2(Ω)

𝚤0

⌃⎮⎮⎮⎮ 𝚤1

⌃⎮⎮⎮⎮ 𝚤2

⌃⎮⎮⎮⎮ 𝚤3

⌃⎮⎮⎮⎮
𝐻1(Ω̂)

∇−−−−−→ 𝐻(curl, Ω̂)
∇×−−−−−−→ 𝐻(div, Ω̂)

∇·−−−−−→ 𝐿2(Ω̂)

Where the mappings 𝚤0, 𝚤1, 𝚤2 and 𝚤3 are called pullbacks and are given by

𝜑(𝑥) :=𝚤0𝜑(𝑥̂) = 𝜑(ℱ−1(𝑥))

Ψ(𝑥) :=𝚤1Ψ̂(𝑥̂) = (𝐷ℱ)
−𝑇

Ψ̂(ℱ−1(𝑥))

Φ(𝑥) :=𝚤2Φ̂(𝑥̂) =
1

𝐽
𝐷ℱΦ̂(ℱ−1(𝑥))

𝜌(𝑥) :=𝚤3𝜌(𝑥̂) = 𝜌(ℱ−1(𝑥))

where 𝐷ℱ is the jacobian matrix of the mapping ℱ .

Note: The pullbacks 𝚤0, 𝚤1, 𝚤2 and 𝚤3 are isomorphisms between the corresponding spaces.

31

spl Documentation, Release 1

6.2 Discrete Spaces

Let us suppose that we have a sequence of finite subspaces for each of the spaces involved in the DeRham sequence.
The discrete DeRham sequence stands for the following commutative diagram between continuous and discrete spaces

𝐻1(Ω)
∇−−−−−→ 𝐻(curl,Ω)

∇×−−−−−−→ 𝐻(div,Ω)
∇·−−−−−→ 𝐿2(Ω)

Π
grad
ℎ

⎮⎮⎮⎮⌄ Πcurl
ℎ

⎮⎮⎮⎮⌄ Πdiv
ℎ

⎮⎮⎮⎮⌄ Π𝐿2

ℎ

⎮⎮⎮⎮⌄
𝑉ℎ(grad,Ω)

∇−−−−−→ 𝑉ℎ(curl,Ω)
∇×−−−−−−→ 𝑉ℎ(div,Ω)

∇·−−−−−→ 𝑉ℎ(𝐿2,Ω)

When using a Finite Elements methods, we often deal with a reference element, and thus we need also to apply the
pullbacks on the discrete spaces. In fact, we have again the following parallel diagram

𝑉ℎ(grad,Ω)
∇−−−−−→ 𝑉ℎ(curl,Ω)

∇×−−−−−−→ 𝑉ℎ(div,Ω)
∇·−−−−−→ 𝑉ℎ(𝐿2,Ω)

𝚤0

⌃⎮⎮⎮⎮ 𝚤1

⌃⎮⎮⎮⎮ 𝚤2

⌃⎮⎮⎮⎮ 𝚤3

⌃⎮⎮⎮⎮
𝑉ℎ(grad, Ω̂)

∇−−−−−→ 𝑉ℎ(curl, Ω̂)
∇×−−−−−−→ 𝑉ℎ(div, Ω̂)

∇·−−−−−→ 𝑉ℎ(𝐿2, Ω̂)

Since, the pullbacks are isomorphisms in the previous diagram, we can define a one-to-one correspondance

𝜑 :=𝚤0𝜑, 𝜑 ∈ 𝑉ℎ(grad,Ω), 𝜑 ∈ 𝑉ℎ(grad, Ω̂)

Ψ :=𝚤1Ψ̂, Ψ ∈ 𝑉ℎ(curl,Ω), Ψ̂ ∈ 𝑉ℎ(curl, Ω̂)

Φ :=𝚤2Φ̂, Φ ∈ 𝑉ℎ(div,Ω), Φ̂ ∈ 𝑉ℎ(div, Ω̂)

𝜌 :=𝚤3𝜌, 𝜌 ∈ 𝑉ℎ(𝐿2,Ω), 𝜌 ∈ 𝑉ℎ(𝐿2, Ω̂)

We have then, the following results

∇𝜑 =𝚤1∇𝜑, 𝜑 ∈ 𝑉ℎ(grad,Ω)

∇×Ψ =𝚤2∇× Ψ̂, Ψ ∈ 𝑉ℎ(curl,Ω)

∇ · Φ =𝚤3∇ · Φ̂, Φ ∈ 𝑉ℎ(div,Ω)

6.3 Projectors

In some cases, one may need to define projectors on smooth functions

𝒞∞(Ω)
∇−−−−−→ 𝒞∞(Ω)

∇×−−−−−−→ 𝒞∞(Ω)
∇·−−−−−→ 𝒞∞(Ω)

Π
grad
ℎ

⎮⎮⎮⎮⌄ Πcurl
ℎ

⎮⎮⎮⎮⌄ Πdiv
ℎ

⎮⎮⎮⎮⌄ Π𝐿2

ℎ

⎮⎮⎮⎮⌄
𝑉ℎ(grad,Ω)

∇−−−−−→ 𝑉ℎ(curl,Ω)
∇×−−−−−−→ 𝑉ℎ(div,Ω)

∇·−−−−−→ 𝑉ℎ(𝐿2,Ω)

32 Chapter 6. DeRham sequences

spl Documentation, Release 1

6.4 Discrete DeRham sequence for B-Splines

Buffa et al [BSV09] show the construction of a discrete DeRham sequence using B-Splines, (here without boundary
conditions)

𝐻1(Ω)
∇−−−−−→ 𝐻(curl,Ω)

∇×−−−−−−→ 𝐻(div,Ω)
∇·−−−−−→ 𝐿2(Ω)

Π
grad
ℎ

⎮⎮⎮⎮⌄ Πcurl
ℎ

⎮⎮⎮⎮⌄ Πdiv
ℎ

⎮⎮⎮⎮⌄ Π𝐿2

ℎ

⎮⎮⎮⎮⌄
𝒮𝑝,𝑝,𝑝 ∇−−−−−→

⎛⎝𝒮𝑝−1,𝑝,𝑝

𝒮𝑝,𝑝−1,𝑝

𝒮𝑝,𝑝,𝑝−1

⎞⎠ ∇×−−−−−−→

⎛⎝𝒮𝑝,𝑝−1,𝑝−1

𝒮𝑝−1,𝑝,𝑝−1

𝒮𝑝−1,𝑝−1,𝑝

⎞⎠ ∇·−−−−−→ 𝒮𝑝−1,𝑝−1,𝑝−1

6.4.1 1d case

1. DeRham sequence is reduced to

R →˓ 𝒮𝑝⏟ ⏞
𝑉ℎ(grad,Ω̂)

∇−−−−−→ 𝒮𝑝−1⏟ ⏞
𝑉ℎ(𝐿2,Ω̂)

−−→ 0

2. The recursion formula for derivative writes

𝑁𝑝
𝑖
′
(𝑡) = 𝐷𝑝

𝑖 (𝑡)−𝐷𝑝
𝑖+1(𝑡) where 𝐷𝑝

𝑖 (𝑡) =
𝑝

𝑡𝑖+𝑝+1 − 𝑡𝑖
𝑁𝑝−1

𝑖 (𝑡)

3. we have 𝒮𝑝−1 = span{𝑁𝑝−1
𝑖 , 1 ≤ 𝑖 ≤ 𝑛− 1 } = span{𝐷𝑝

𝑖 , 1 ≤ 𝑖 ≤ 𝑛− 1 } which is a change of basis as a
diagonal matrix

4. Now if 𝑢 ∈ 𝑆𝑝, with and expansion 𝑢 =
∑︀

𝑖 𝑢𝑖𝑁
𝑝
𝑖 , we have

𝑢′ =
∑︁
𝑖

𝑢𝑖 (𝑁𝑝
𝑖)

′
=

∑︁
𝑖

(−𝑢𝑖−1 + 𝑢𝑖)𝐷
𝑝
𝑖

5. If we introduce the B-Splines coefficients vector u := (𝑢𝑖)1≤𝑖≤𝑛 (and u⋆ for the derivative), we have

u⋆ = 𝐷u

where 𝐷 is the incidence matrix (of entries −1 and +1)

Discrete derivatives:

𝒢 = 𝐷

6.4.2 2d case

In 2d, the are two De-Rham complexes:

𝐻1(Ω)
∇−−−−−→ 𝐻(curl,Ω)

∇×−−−−−−→ 𝐿2(Ω)

Π
grad
ℎ

⎮⎮⎮⎮⌄ Πcurl
ℎ

⎮⎮⎮⎮⌄ Π𝐿2

ℎ

⎮⎮⎮⎮⌄
𝑉ℎ(grad,Ω)

∇−−−−−→ 𝑉ℎ(curl,Ω)
∇×−−−−−−→ 𝑉ℎ(𝐿2,Ω)

6.4. Discrete DeRham sequence for B-Splines 33

spl Documentation, Release 1

and

𝐻1(Ω)
∇×−−−−−−→ 𝐻(div,Ω)

∇·−−−−−→ 𝐿2(Ω)

Π
grad
ℎ

⎮⎮⎮⎮⌄ Πdiv
ℎ

⎮⎮⎮⎮⌄ Π𝐿2

ℎ

⎮⎮⎮⎮⌄
𝑉ℎ(grad,Ω)

∇−−−−−→ 𝑉ℎ(div,Ω)
∇·−−−−−→ 𝑉ℎ(𝐿2,Ω)

Let 𝐼 be the identity matrix, we have

Discrete derivatives:

𝒢 =

(︂
𝐷 ⊗ 𝐼
𝐼 ⊗𝐷

)︂

𝒞 =

(︂
𝐼 ⊗𝐷
−𝐷 ⊗ 𝐼

)︂
[scalar curl], 𝒞 =

(︀
−𝐼 ⊗𝐷 𝐷 ⊗ 𝐼

)︀
[vectorial curl]

𝒟 =
(︀
𝐷 ⊗ 𝐼 𝐼 ⊗𝐷

)︀

6.4.3 3d case

Discrete derivatives:

𝒢 =

⎛⎝𝐷 ⊗ 𝐼 ⊗ 𝐼
𝐼 ⊗𝐷 ⊗ 𝐼
𝐼 ⊗ 𝐼 ⊗𝐷

⎞⎠

𝒞 =

⎛⎝ 0 −𝐼 ⊗ 𝐼 ⊗𝐷 𝐼 ⊗𝐷 ⊗ 𝐼
𝐼 ⊗ 𝐼 ⊗𝐷 0 −𝐷 ⊗ 𝐼 ⊗ 𝐼
−𝐼 ⊗𝐷 ⊗ 𝐼 𝐷 ⊗ 𝐼 ⊗ 𝐼 0

⎞⎠
𝒟 =

(︀
𝐷 ⊗ 𝐼 ⊗ 𝐼 𝐼 ⊗𝐷 ⊗ 𝐼 𝐼 ⊗ 𝐼 ⊗𝐷

)︀

Note: From now on, we will denote the discrete derivative by D𝑘 for the one going from 𝑉𝑘 to 𝑉𝑘+1.

6.5 Algebraic identities

Let us consider the discretization of the exterior derivative

𝜔𝑘+1 = d𝜔𝑘

multiplying by a test function 𝜂𝑘+1 and integrating over the whole computation domain, we get(︀
𝜂𝑘+1, 𝜔𝑘+1

)︀
𝑘+1

=
(︀
𝜂𝑘+1,d𝜔𝑘

)︀
𝑘+1

34 Chapter 6. DeRham sequences

spl Documentation, Release 1

let 𝐸𝑘+1, 𝑊 𝑘 and 𝑊 𝑘+1 be the vector representation of 𝜂𝑘+1, 𝜔𝑘 and 𝜔𝑘+1. We get

𝐸𝑘+1𝑇𝑀𝑘+1𝑊
𝑘+1 = 𝐸𝑘+1𝑇𝐷𝑘+1,𝑘𝑊

𝑘

where

𝐷𝑘+1,𝑘 =
(︁(︀

𝜂𝑘+1
𝑖 ,d𝜔𝑘

𝑗

)︀
𝑘+1

)︁
𝑖,𝑗

On the other hand, using the coderivative, we get(︀
𝜂𝑘+1, 𝜔𝑘+1

)︀
𝑘+1

=
(︀
𝛿𝜂𝑘+1, 𝜔𝑘

)︀
𝑘

+ 𝐵𝐶

Let us now introduce the following matrix

𝐷𝑘,𝑘+1 =
(︁(︀

𝛿𝜂𝑘+1
𝑖 , 𝜔𝑘

𝑗

)︀
𝑘

)︁
𝑖,𝑗

hence,

𝐸𝑘+1𝑇𝐷𝑘,𝑘+1𝑊
𝑘 =

(︀
D⋆

𝑘+1𝐸
𝑘+1

)︀𝑇
𝑀𝑘𝑊

𝑘

Therefor, we have the following important result

Proposition:

• 𝐷𝑘+1,𝑘 = 𝐷𝑘,𝑘+1 + 𝐵𝐶

• 𝐷𝑘+1,𝑘 = 𝑀𝑘+1D𝑇
𝑘

• 𝐷𝑘,𝑘+1 = D⋆
𝑘+1

𝑇𝑀𝑘

References

6.5. Algebraic identities 35

spl Documentation, Release 1

36 Chapter 6. DeRham sequences

CHAPTER 7

API

You will find here both the Fortran doxygen documentation as well as the Python-API.

7.1 Fortran API

7.2 Python API

7.2.1 spl package

Subpackages

spl.core package

Submodules

spl.core.basic module

Module contents

Submodules

spl.mapping module

spl.utilities module

Module contents

37

spl Documentation, Release 1

38 Chapter 7. API

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

39

spl Documentation, Release 1

40 Chapter 8. Indices and tables

Bibliography

[dB01] C. de Boor. A Practical Guide to Splines. Applied Mathematical Sciences. Springer New York, 2001. ISBN
9780387953663. URL: https://books.google.de/books?id=m0QDJvBI_ecC.

[Far02] G. Farin. Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann Pub. Inc., San Francisco, CA,
USA, 2002. ISBN 1-55860-737-4.

[HHM05] Qi-Xing Huang, Shi-Min Hu, and Ralph R. Martin. Fast degree elevation and knot insertion for b-spline
curves. Computer Aided Geometric Design, 22(2):183 – 197, 2005. URL: http://www.sciencedirect.com/science/
article/B6TYN-4DXBTHR-2/2/d5b3eec2f4c230c8051623c1c000beae, doi:DOI: 10.1016/j.cagd.2004.11.001.

[LP95] W. Tiller L. Piegl. The NURBS Book. Springer-Verlag, Berlin, Heidelberg, 1995. second ed.

[NT93] Goldman R. N. and Lyche T. Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces.
SIAM, Philadelphia, USA, 1993. ISBN 9780898713060.

[PP91] Hartmut Prautzsch and Bruce Piper. A fast algorithm to raise the degree of spline curves. Comput. Aided Geom.
Des., 8:253–265, October 1991. URL: http://portal.acm.org/citation.cfm?id=124930.124932, doi:10.1016/0167-
8396(91)90015-4.

[BSV09] A. Buffa, G. Sangalli, and R. Vazquez. Isogeometric analysis in electromagnetics: b-splines approximation.
Comput. Methods Appl. Mech. Engrg, 199:1143–1152, 2009.

41

https://books.google.de/books?id=m0QDJvBI_ecC
http://www.sciencedirect.com/science/article/B6TYN-4DXBTHR-2/2/d5b3eec2f4c230c8051623c1c000beae
http://www.sciencedirect.com/science/article/B6TYN-4DXBTHR-2/2/d5b3eec2f4c230c8051623c1c000beae
https://doi.org/DOI: 10.1016/j.cagd.2004.11.001
http://portal.acm.org/citation.cfm?id=124930.124932
https://doi.org/10.1016/0167-8396(91)90015-4
https://doi.org/10.1016/0167-8396(91)90015-4

	First Steps with SPL
	Dive into SPL
	B-Splines and NURBS
	GLT
	Exterior Algebra
	DeRham sequences
	API
	Indices and tables
	Bibliography

